【題目】已知橢圓=1(a>b>0)的右焦點(diǎn)為F(2,0),且過(guò)點(diǎn)(2,).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線l:y=kx(k>0)與橢圓在第一象限的交點(diǎn)為M,過(guò)點(diǎn)F且斜率為-1的直線與l交于點(diǎn)N,若sin∠FON(O為坐標(biāo)原點(diǎn)),求k的值.

【答案】(1);(2)

【解析】

1)根據(jù)題意列出有關(guān)a2b2的方程組,求出這兩個(gè)數(shù)的值,即可求出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)M的坐標(biāo)為(x1y1),點(diǎn)N的坐標(biāo)(x2,y2),利用已知條件sinFON,得出,然后將直線l的方程分別與橢圓方程和直線NF的方程聯(lián)立,求出點(diǎn)M、N的坐標(biāo),結(jié)合條件可求出k的值.

(1)由題意可知,解得a2=16,b2=12(負(fù)值舍去),

所以橢圓方程為;

(2)設(shè)點(diǎn)M的坐標(biāo)為,點(diǎn)N的坐標(biāo),

由題可知,故,

因?yàn)?/span>,而,所以,

,可得

所以,

,消去x,可得,

易知直線NF的方程為,

,消去x,可得

所以,整理得52k2﹣96k+27=0,

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線與圓相交于兩點(diǎn)A,B.問(wèn):是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 (n≥2)個(gè)實(shí)數(shù)組成的n行n列的數(shù)表中, 表示第i行第j列的數(shù),記 -1,0,1} (),且r1,r2,…,rn,c1,c2,..,cn,兩兩不等,則稱此表為“n階H表”,記

H={ r1,r2,…,rn,c1,c2,..,cn}.

(I)請(qǐng)寫出一個(gè)“2階H表”;

(II)對(duì)任意一個(gè)“n階H表”,若整數(shù),且,求證: 為偶數(shù);

(Ⅲ)求證:不存在“5階H表”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,E是PC的中點(diǎn),底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點(diǎn)F.

(1)求證:EF∥平面PAB;

(2)若PB與平面ABCD所成角的正弦值為,求二面角P-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問(wèn)卷滿意度評(píng)分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再?gòu)倪@5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=x+

1)若關(guān)于x的不等式f3x)≤m3x+2[-2,2]上恒成立.求實(shí)數(shù)m的取值范圍;

2)若函數(shù)gx=f|2x-1|-3t-2有四個(gè)不同的零點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若對(duì)恒成立,求的取值范圍;

(2)證明:不等式對(duì)于正整數(shù)恒成立,其中為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓(ab>0)的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)F重合,且橢圓短軸的兩個(gè)端點(diǎn)與點(diǎn)F構(gòu)成正三角形.

(1)求橢圓的方程;

(2)若過(guò)點(diǎn)(1,0)的直線l與橢圓交于不同的兩點(diǎn)P,Q,試問(wèn)在x軸上是否存在定點(diǎn)E(m,0),使恒為定值?若存在,求出E的坐標(biāo),并求出這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案