精英家教網 > 高中數學 > 題目詳情

已知命題p:“x∈[1,2],2x2-a≥0”,命題q:“x∈R,x2+2ax+2-a=0”,若命題“p且q”是真命題,求實數a的取值范圍。

 

【答案】

a≤-2或1≤ a≤2.  

【解析】

試題分析:p:y=2x2在x∈[1,2]遞增,最小值為2,所以a≤2.   4分

q:Δ=4a2-4(2-a)≥0,∴a2+a-2≥0,a≤-2或a≥1  .  8分

若命題“p且q”是真命題,則p、q都為真.  12分

a≤-2或1≤ a≤2.    14分

考點:本題考查了充要條件的判斷

點評:利用等價命題先進行命題的等價轉化,搞清楚命題中條件與結論的關系,再去解不等式,找解集間的包含關系,進而使問題解決

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知命題P:?x∈R,使x2-x+a=0;命題Q:函數y=
ax-1
ax2+ax+1
的定義域為R.
(1)若命題P為真,求實數a的取值范圍;
(2)若命題Q為真,求實數a的取值范圍;
(3)如果P∧Q為假,P∨Q為真,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:?x∈R,2x2+2x+
1
2
<0
;命題q:?x∈R,sinx-cosx=
2
.則下列判斷正確的是( 。
A、p是真命題
B、q是假命題
C、¬P是假命題
D、¬q是假命題

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:x=2k+1(k∈Z),命題q:x=4k-1(k∈Z),則p是q的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:?x∈R,x2+2ax+a≤0,則命題p的否定是
?x?R,x2+2ax+a>0
?x?R,x2+2ax+a>0
;若命題p為假命題,則實數a的取值范圍是
(0,1)
(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:?x∈R,使2x2+(k-1)x+
1
2
<0;命題q:方程
x2
9-k
-
y2
k-1
=1
表示雙曲線.若p∧q為真命題,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案