求二項式(x-
1
x
8展開式中含x2項的系數(shù).
考點:二項式定理的應用
專題:二項式定理
分析:利用二項式展開式的通項公式Tr+1,求出r的值,即可得出結果.
解答: 解:二項式(x-
1
x
8展開式的通項公式為
Tr+1=
C
r
8
x8-r(-
1
x
)r
=(-1)r
C
r
8
x8-2r

令8-2r=2,
解得r=3;
∴展開式中含x2項的系數(shù)(-1)3
C
3
8
=-56.
點評:本題考查了二項式展開式通項公式的應用問題,解題時應熟練地掌握通項公式的應用,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在三棱錐V-ABC中,VB=6,AC=3,P為△VAC的重心,過點P作三棱錐的一個截面,使截面平行于直線VB和AC,則截面的周長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x,y的方程C:x2+y2-2x-4y+m=0.
(1)當m為何值時,方程C表示圓;
(2)在(1)的條件下,若圓C與直線l:x+2y-4=0相交于M、N兩點,且|MN|=
4
5
5
,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2-2ax+2.
(1)求f(x)在區(qū)間[2,+∞)上的最小值;
(2)若不等式f(x)>0在區(qū)間[2,+∞)上恒成立,求實數(shù)a的取值范圍;
(3)解關于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=3,an+1=an+2.
(1)求數(shù)列{an}的通項公式an
(2)若bn=an×3n,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)(x∈R)是單調遞減的奇函數(shù),則不等式f(x)+f(x2)>0的解集是( 。
A、(-∞,-1)
B、(1,+∞)
C、(0,1)
D、(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和記為Sn,a1=1,an+1=2Sn+1(n≥1),則{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(
x
+1)=x+2
x
.則f(x)=( 。
A、f(x)=x+2
x
B、f(x)=x+2
x
(x≥0)
C、f(x)=x2-1
D、f(x)=x2-1(x≥1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式(式中每個字母均為正數(shù)):
(1)32 
2
5
×27 -
4
3

(2)
(2x
1
4
y-
2
3
)•(-3x
1
4
y
1
3
)3
4xy-
2
3

查看答案和解析>>

同步練習冊答案