【題目】過曲線C1 (a>0,b>0)的左焦點(diǎn)F1作曲線C2:x2+y2=a2的切線,設(shè)切點(diǎn)為M,直線F1M交曲線C3:y2=2px(p>0)于點(diǎn)N,其中曲線C1與C3有一個(gè)共同的焦點(diǎn),若|MF1|=|MN|,則曲線C1的離心率為(  )

A.B.C.D.

【答案】D

【解析】

設(shè)雙曲線的右焦點(diǎn)為F2,則F2的坐標(biāo)為(c,0),由題意知F2也是C3的焦點(diǎn),所以C3:y2=4cx.連接OM,NF2,因?yàn)镺為F1F2的中點(diǎn),M為F1N的中點(diǎn),所以O(shè)M為△NF1F2的中位線,所以O(shè)M∥NF2.因?yàn)閨OM|=a,所以|NF2|=2a.又NF2⊥NF1,|F1F2|=2c,所以|NF1|=2b.設(shè)N(x,y),則由拋物線的定義可得|NF2|=x+c=2a,所以x=2a-c.過點(diǎn)F1作x軸的垂線,點(diǎn)N到該垂線的距離為2a,由y2+4a2=4b2,即4c(2a-c)+4a2=4(c2-a2),得e2-e-1=0,解得e= (負(fù)值舍去),故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)給出兩個(gè)條件:①,②,從中選出一個(gè)條件補(bǔ)充在下面的問題中,并以此為依據(jù)求解問題:(選出一種可行的條件解答,若兩個(gè)都選,則按第一個(gè)解答計(jì)分)在中,分別為內(nèi)角所對(duì)的邊( ).

1)求;

2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C的對(duì)邊分別為ab,c.已知asinA+B)=csin.

1)求A

2)求sinBsinC的取值范圍;

3)若△ABC的面積為,周長(zhǎng)為8,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知多面體ABCDEF中,四邊形ABFE為正方形,,GAB的中點(diǎn),.

1)求證:平面CDEF;

2)求平面ACD與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)已知直線若直線關(guān)于對(duì)稱,又函數(shù)處的切線與平行,求實(shí)數(shù)的值;

2)若,證明:當(dāng)時(shí),恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)橢圓 )的上頂點(diǎn)為, 上的一點(diǎn),以為直徑的圓經(jīng)過橢圓的右焦點(diǎn)

1)求橢圓的方程;

2)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),問:在軸上是否存在兩個(gè)定點(diǎn),它們到直線的距離之積等于?如果存在,求出這兩個(gè)定點(diǎn)的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次考試共有12道選擇題,每道選擇題都有4個(gè)不同的選項(xiàng),其中有且只有一個(gè)是正確的,評(píng)分標(biāo)準(zhǔn)規(guī)定:每題只選一個(gè)選項(xiàng),答對(duì)得5分,不答或答錯(cuò)得0分,某考生已確定有8道題的答案是正確的,其余題中,有兩道題都可判斷兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道題可以判斷一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道題因?yàn)椴焕斫忸}意只好亂猜,請(qǐng)求出該考生:

(1)得60分的概率;

(2)所得分?jǐn)?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長(zhǎng)方體中,底面ABCD的長(zhǎng)AB=4,寬BC=4,高=3,點(diǎn)M,N分別是BC,的中點(diǎn),點(diǎn)P在上底面中,點(diǎn)Q上,若,則PQ長(zhǎng)度的最小值是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2axbg(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.

(1)求a,b,c,d的值;

(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案