設(shè)Sn=1-2+3-4+…+(-1)n-1•n,則S2012=
-1006
-1006
分析:分組求和,利用等差數(shù)列的求和公式,即可得到結(jié)論.
解答:解:S2012=(1+3+…+2011)+(2+4+…+2012)=
1006
2
(1+2011)-
1006
2
(2+2012)
=-1006
故答案為:-1006.
點(diǎn)評(píng):本題考查數(shù)列的求和,考查等差數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn=1+2+3+…+n,n∈N*,求f(n)=
Sn(n+32)Sn+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn=1+2+3+…+n,n∈N*,則函數(shù)f(n)=
Sn
(n+32)Sn+1
的最大值為( 。
A、
1
20
B、
1
30
C、
1
40
D、
1
50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn=1+2+3+…+n,n∈N*,則函數(shù)f(n)=
Sn(n+32)Sn+1
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn=1+2+3=…+n,n∈N*,則f(n)=
Sn
(n+7)Sn+1
的最大值為
2
33
2
33

查看答案和解析>>

同步練習(xí)冊(cè)答案