【題目】(本小題滿分12分)已知函數(shù)
(1)若直線過點(diǎn),并且與曲線相切,求直線的方程;
(2)設(shè)函數(shù)在上有且只有一個(gè)零點(diǎn),求的取值范圍。(其中為自然對數(shù)的底數(shù))
【答案】(1)直線的方程為 (2)a的取值范圍是或
【解析】
試題分析:(1)先求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義求切線的斜率,從而確定切線的方程;(2)因?yàn)?/span>,注意到g(1)=0,所以,所求問題等價(jià)于函數(shù)在上沒有零點(diǎn).因此只要求出函數(shù)的導(dǎo)數(shù),根據(jù)的取值計(jì)論函數(shù)在上的性質(zhì),以確定 取何值時(shí),函數(shù)在上沒有零點(diǎn).
試題解析:解:(1)設(shè)切點(diǎn)坐標(biāo)為,則切線的斜率為
所以切線的方程為 2分
又切線過點(diǎn)(1,0),所以有
即 解得
所以直線的方程為 4分
(或:設(shè),則
單增,單減
有唯一解,
所以直線的方程為 4分)
(2)因?yàn)?/span>,注意到g(1)=0
所以,所求問題等價(jià)于函數(shù)在上沒有零點(diǎn).
因?yàn)?/span>
所以由<0<00<<>0>
所以在上單調(diào)遞減,在上單調(diào)遞增. 6分
①當(dāng)即時(shí),在上單調(diào)遞增,所以>
此時(shí)函數(shù)g(x)在上沒有零點(diǎn) 7分
②當(dāng)1<<e,即1<a<2時(shí),在上單調(diào)遞減,在上單調(diào)遞增.
又因?yàn)間(1)=0,g(e)=e-ae+a,在上的最小值為
所以,(i)當(dāng)1<a時(shí),在上的最大值g(e)0,即此時(shí)函數(shù)g(x)在上有零點(diǎn)。 8分
(ii)當(dāng) <a<2時(shí), g(e)<0,即此時(shí)函數(shù)g(x)在上沒有零點(diǎn). 10分
③當(dāng)即時(shí),在上單調(diào)遞減,所以在上滿足<此時(shí)函數(shù)g(x)在上沒有零點(diǎn)
綜上,所求的a的取值范圍是或<a 12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的一個(gè)內(nèi)角為,并且三邊長構(gòu)成公差為4的等差數(shù)列,則的面積為( )
A. 15 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形沿對角線折成直二面角,
①與平面所成角的大小為
②是等邊三角形
③與所成的角為
④
⑤二面角為
則上面結(jié)論正確的為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABCD中,側(cè)面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M為PC的中點(diǎn).
(1)求證:PC⊥AD.
(2)在棱PB上是否存在一點(diǎn)Q,使得A,Q,M,D四點(diǎn)共面?若存在,指出點(diǎn)Q的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校想了解高二數(shù)學(xué)成績在學(xué)業(yè)水平考試中的情況,從中隨機(jī)抽出人的數(shù)學(xué)成績作為樣本并進(jìn)行統(tǒng)計(jì),頻率分布表如下表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | |||
第2組 | |||
第3組 | |||
第4組 | |||
第5組 | |||
合計(jì) |
(1)據(jù)此估計(jì)這次參加數(shù)學(xué)考試的高二學(xué)生的數(shù)學(xué)平均成績;
(2)從這五組中抽取人進(jìn)行座談,若抽取的這人中,恰好有人成績?yōu)?/span>分,人成績?yōu)?/span>分,人成績?yōu)?/span>分,人成績?yōu)?/span>分,求這人數(shù)學(xué)成績的方差;
(3)從人的樣本中,隨機(jī)抽取測試成績在內(nèi)的兩名學(xué)生,設(shè)其測試成績分別為,.
(i)求事件“”的概率;
(ii)求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對角線AC與BD的交點(diǎn),M是PD的中點(diǎn).
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn).
(Ⅰ)求證:當(dāng)點(diǎn)為線段的中點(diǎn)時(shí),平面;
(Ⅱ)設(shè),試問:是否存在實(shí)數(shù),使得平面與平面所成銳二面角的余弦值為?若存在,求出這個(gè)實(shí)數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家放開計(jì)劃生育政策,鼓勵(lì)一對夫婦生育2個(gè)孩子.在某地區(qū)的100000對已經(jīng)生育了一胎夫婦中,進(jìn)行大數(shù)據(jù)統(tǒng)計(jì)得,有100對第一胎生育的是雙胞胎或多胞胎,其余的均為單胞胎.在這99900對恰好生育一孩的夫婦中,男方、女方都愿意生育二孩的有50000對,男方愿意生育二孩女方不愿意生育二孩的有對,男方不愿意生育二孩女方愿意生育二孩的有對,其余情形有對,且.現(xiàn)用樣本的頻率來估計(jì)總體的概率.
(1)說明“其余情形”指何種具體情形,并求出,,的值;
(2)該地區(qū)為進(jìn)一步鼓勵(lì)生育二孩,實(shí)行貼補(bǔ)政策:凡第一胎生育了一孩的夫婦一次性貼補(bǔ)5000元,第一胎生育了雙胞胎或多胞胎的夫婦只有一次性貼補(bǔ)15000元.第一胎已經(jīng)生育了一孩再生育了二孩的夫婦一次性再貼補(bǔ)20000元.這種補(bǔ)貼政策直接提高了夫婦生育二孩的積極性:原先男方或女方中只有一方愿意生育二孩的夫婦現(xiàn)在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫婦仍然不愿意生育二孩.設(shè)為該地區(qū)的一對夫婦享受的生育貼補(bǔ),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為提升學(xué)生的英語學(xué)習(xí)能力,進(jìn)行了主題分別為“聽”、“說”、“讀”、“寫”四場競賽.規(guī)定:每場競賽的前三名得分分別為, , (,且, , ),選手的最終得分為各場得分之和.最終甲、乙、丙三人包攬了每場競賽的前三名,在四場競賽中,已知甲最終分為分,乙最終得分為分,丙最終得分為分,且乙在“聽”這場競賽中獲得了第一名,則“聽”這場競賽的第三名是( )
A. 甲 B. 乙 C. 丙 D. 甲和丙都有可能
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com