精英家教網 > 高中數學 > 題目詳情
設m,k為整數,方程mx2-2kx+2=0在區(qū)間(0,1)內有兩個不同的根,則m+k的最小值為
11
11
分析:設f(x)=mx2-2kx+2,要使已知方程在區(qū)間(0,1)內兩個不同的根,即f(x)的圖象在區(qū)間(0,1)內與x軸有兩個不同的交點,根據圖象可得到關于m和k的不等式組,利用線性規(guī)劃知識可以求解.
解答:解:設f(x)=mx2-2kx+2,由f(0)=2,知f(x)的圖象恒過定點(0,2),
因此要使已知方程在區(qū)間(0,1)內兩個不同的根,即f(x)的圖象在區(qū)間(0,1)內與x軸有兩個不同的交點
由題意可以得到:必有
m>0
f(1)=m-2k+2>0
0<
k
m
<1
△=4k2-8m>0
,即
m>0,k>0
m-2k+2>0
m-k>0
k2-2m>0

在直角坐標系mok中作出滿足不等式平面區(qū)域,如圖所示,
設z=m+k,則直線m+k-z=0經過圖中的陰影中的整點(7,4)時,z=m+k取得最小值,即zmin=11.
所以m+k的最小值為11
故答案為:11.
點評:本題考查二次函數與二次方程之間的聯系,考查數形結合的數學思想,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設m,k為整數,方程mx2-kx+2=0在區(qū)間(0,1)內有兩個不同的根,則m+k的最小值為( 。
A、-8B、8C、12D、13

查看答案和解析>>

科目:高中數學 來源: 題型:

設m、k為整數,方程mx2-kx+3=0在區(qū)間(0,1)內有兩個不同的實根,則m+k的最小值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設m,k為整數.方程x2-mx+k=0在區(qū)間(0,1)上有兩個不同的根,則
k
m
的取值范圍是
(0,
1
2
(0,
1
2

查看答案和解析>>

科目:高中數學 來源:2012-2013學年湖北省荊州市公安三中高三(上)數學積累測試卷01(解析版) 題型:選擇題

設m,k為整數,方程mx2-kx+2=0在區(qū)間(0,1)內有兩個不同的根,則m+k的最小值為( )
A.-8
B.8
C.12
D.13

查看答案和解析>>

同步練習冊答案