【題目】已知點,,點為曲線上任意一點且滿足.
(1)求曲線的方程;
(2)設(shè)曲線與軸交于、兩點,點是曲線上異于、的任意一點,直線、分別交直線于點、.求證:以為直線的圓與軸交于定點,并求出點的坐標.
科目:高中數(shù)學 來源: 題型:
【題目】已知點和直線,為曲線上一點,為點到直線的距離且滿足.
(1)求曲線的軌跡方程;
(2)過點作曲線的兩條動弦,若直線斜率之積為,試問直線是否一定經(jīng)過一定點?若經(jīng)過,求出該定點坐標;若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為上的偶函數(shù),當時,.對于結(jié)論
(1)當時,;
(2)函數(shù)的零點個數(shù)可以為;
(3)若函數(shù)在區(qū)間上恒為正,則實數(shù)的范圍是
以上說法正確的序號是______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】利用獨立性檢驗的方法調(diào)查高中生性別與愛好某項運動是否有關(guān),通過隨機調(diào)查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認為“愛好該項運動與性別無關(guān)”
B. 有99%以上的把握認為“愛好該項運動與性別有關(guān)”
C. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別有關(guān)”
D. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .
(Ⅰ)證明: ;
(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】【試題分析】(I) 取的中點為,連接,.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進而求得面積.
【試題解析】
證明:(Ⅰ)取的中點為,連接,,
∵為等邊三角形,∴.
底面中,可得四邊形為矩形,∴,
∵,∴平面,
∵平面,∴.
又,所以.
(Ⅱ)由面面,,
∴平面,所以為棱錐的高,
由,知,
,
∴.
由(Ⅰ)知,,∴.
.
由,可知平面,∴,
因此.
在中,,
取的中點,連結(jié),則,,
∴ .
所以棱錐的側(cè)面積為.
【題型】解答題
【結(jié)束】
20
【題目】已知圓經(jīng)過橢圓: 的兩個焦點和兩個頂點,點, , 是橢圓上的兩點,它們在軸兩側(cè),且的平分線在軸上, .
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三統(tǒng)考結(jié)束后,分別從喜歡數(shù)學和不喜歡數(shù)學的學生中各隨機抽取了10人的成績,分數(shù)都是整數(shù),得到如下莖葉圖,但是喜歡數(shù)學和不喜歡數(shù)學的各缺失了一個數(shù)據(jù).若已知不喜歡數(shù)學的10人成績的中位數(shù)為75,且已知喜歡數(shù)學的10人中所缺失成績是85分以上,但是不高于喜歡數(shù)學的10人的平均分.不喜歡數(shù)學和喜歡數(shù)學缺失的數(shù)據(jù)分別是____,____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商品在近30天內(nèi)每件的銷售價格p(元)與時間t(天)的函數(shù)關(guān)系是該商品的日銷售量Q(件)與時間t(天)的函數(shù)關(guān)系是Q=-t+40(0<t≤30,t∈N).
(1)求這種商品的日銷售金額的解析式;
(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com