【題目】在如圖所示的五面體中,四邊形為菱形,且,平面,,為中點.
(1)求證:平面;
(2)若平面平面,求到平面的距離.
【答案】(1)證明見解析;(2).
【解析】
(1)取中點,連接,,說明,證明平面,證明,,推出,,證明平面,轉(zhuǎn)化證明平面;
(2)說明到平面的距離等于到平面的距離,取的中點,連接,,推出平面,,設(shè)到平面的距離為,由,轉(zhuǎn)化求解即可.
解:(1)取中點,連接,,
因為,分別為,中點,所以,
又平面,且平面,所以平面,
因為平面,平面,平面平面,
所以,又,,
所以,.
所以四邊形為平行四邊形.所以.
又平面且平面,
所以平面,又,
所以平面平面.又平面,
所以平面.
(2)由(1)得平面,所以到平面的距離等于到平面的距離,
取的中點,連接,,
由四邊形為菱形,且,,
可得,,
因為平面平面,平面平面,
所以平面,,
因為,所以,
所以,
設(shè)到平面的距離為,又因為,
所以由,
得,解得.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|+2|x﹣m|
(1)當m=2時,求f(x)≤9的解集;
(2)若f(x)≤2的解集不是空集,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:1(a>b>0),A(﹣a,0),B(0,﹣b),P為C上位于第一象限的動點,PA交y軸于點E,PB交x軸于點F.
(1)探究四邊形AEFB的面積是否為定值,說明理由;
(2)當△PEF的面積達到最大值時,求點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】美團外賣和百度外賣兩家公司其“騎手”的日工資方案如下:美團外賣規(guī)定底薪70元,每單抽成1元;百度外賣規(guī)定底薪100元,每日前45單無抽成,超出45單的部分每單抽成6元,假設(shè)同一公司的“騎手”一日送餐單數(shù)相同,現(xiàn)從兩家公司個隨機抽取一名“騎手”并記錄其100天的送餐單數(shù),得到如下條形圖:
(Ⅰ)求百度外賣公司的“騎手”一日工資(單位:元)與送餐單數(shù)的函數(shù)關(guān)系;
(Ⅱ)若將頻率視為概率,回答下列問題:
①記百度外賣的“騎手”日工資為(單位:元),求的分布列和數(shù)學期望;
②小明擬到這兩家公司中的一家應(yīng)聘“騎手”的工作,如果僅從日收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,半球內(nèi)有一內(nèi)接正四棱錐S﹣ABCD,該四棱錐的體積為.
(1)求半球的半徑.
(2)求平面SAD與平面SBC所成的二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是( )
A.(0,1)∪(1,e)B.
C.D.(0,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com