【題目】在如圖所示的五面體中,四邊形為菱形,且平面,中點.

1)求證:平面;

2)若平面平面,求到平面的距離.

【答案】1)證明見解析;(2.

【解析】

1)取中點,連接,,說明,證明平面,證明,推出,,證明平面,轉(zhuǎn)化證明平面

2)說明到平面的距離等于到平面的距離,取的中點,連接,,推出平面,,設(shè)到平面的距離為,由,轉(zhuǎn)化求解即可.

解:(1)取中點,連接,,

因為,分別為中點,所以

平面,且平面,所以平面,

因為平面,平面,平面平面,

所以,又,

所以,

所以四邊形為平行四邊形.所以

平面平面,

所以平面,又,

所以平面平面.又平面,

所以平面

2)由(1)得平面,所以到平面的距離等于到平面的距離,

的中點,連接,,

由四邊形為菱形,且,

可得,,

因為平面平面,平面平面,

所以平面,

因為,所以,

所以,

設(shè)到平面的距離為,又因為,

所以由,

,解得

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=|x+1|+2|xm|

1)當m2時,求fx≤9的解集;

2)若fx≤2的解集不是空集,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , , . 

1)求證:平面 平面;

2)設(shè)上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1ab0),A(﹣a0),B0,﹣b),PC上位于第一象限的動點,PAy軸于點E,PBx軸于點F.

1)探究四邊形AEFB的面積是否為定值,說明理由;

2)當△PEF的面積達到最大值時,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

上的最小值;

m為整數(shù),當時,恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】美團外賣和百度外賣兩家公司其“騎手”的日工資方案如下:美團外賣規(guī)定底薪70元,每單抽成1元;百度外賣規(guī)定底薪100元,每日前45單無抽成,超出45單的部分每單抽成6元,假設(shè)同一公司的“騎手”一日送餐單數(shù)相同,現(xiàn)從兩家公司個隨機抽取一名“騎手”并記錄其100天的送餐單數(shù),得到如下條形圖:

(Ⅰ)求百度外賣公司的“騎手”一日工資(單位:元)與送餐單數(shù)的函數(shù)關(guān)系;

(Ⅱ)若將頻率視為概率,回答下列問題:

①記百度外賣的“騎手”日工資為(單位:元),求的分布列和數(shù)學期望;

②小明擬到這兩家公司中的一家應(yīng)聘“騎手”的工作,如果僅從日收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)只有一個極值點,則k的取值范圍為

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,半球內(nèi)有一內(nèi)接正四棱錐SABCD,該四棱錐的體積為

1)求半球的半徑.

2)求平面SAD與平面SBC所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),關(guān)于x的方程fx)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是(

A.0,1)∪(1eB.

C.D.0,1

查看答案和解析>>

同步練習冊答案