已知點(diǎn)是橢圓
上的在第一象限內(nèi)的點(diǎn),又
、
,
是原點(diǎn),則四邊形
的面積的最大值是 。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
45 |
y2 |
20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)為橢圓
上且位于在第三象限內(nèi)一點(diǎn),且它與兩焦點(diǎn)連線互相垂直,若點(diǎn)
到直線
的距離不大于3,則實(shí)數(shù)
的取值范圍是( )
A.[-7 ,8] B.[,
] C.[
,
] D.(
,
)∪[8 ,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東湛江市普通高考測試卷(一)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知頂點(diǎn)為原點(diǎn)的拋物線
的焦點(diǎn)
與橢圓
的右焦點(diǎn)重合
與
在第一和第四象限的交點(diǎn)分別為
.
(1)若△AOB是邊長為的正三角形,求拋物線
的方程;
(2)若,求橢圓
的離心率
;
(3)點(diǎn)為橢圓
上的任一點(diǎn),若直線
、
分別與
軸交于點(diǎn)
和
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東湛江市普通高考測試卷(一)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知頂點(diǎn)為原點(diǎn)的拋物線
的焦點(diǎn)
與橢圓
的右焦點(diǎn)重合,
與
在第一和第四象限的交點(diǎn)分別為
.
(1)若△AOB是邊長為的正三角形,求拋物線
的方程;
(2)若,求橢圓
的離心率
;
(3)點(diǎn)為橢圓
上的任一點(diǎn),若直線
、
分別與
軸交于點(diǎn)
和
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省六校教育研究會高三2月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系中,已知
分別是橢圓
的左、右焦點(diǎn),橢圓
與拋物線
有一個(gè)公共的焦點(diǎn),且過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)是橢圓
在第一象限上的任一點(diǎn),連接
,過
點(diǎn)作斜率為
的直線
,使得
與橢圓
有且只有一個(gè)公共點(diǎn),設(shè)直線
的斜率分別為
,
,試證明
為定值,并求出這個(gè)定值;
(III)在第(Ⅱ)問的條件下,作,設(shè)
交
于點(diǎn)
,
證明:當(dāng)點(diǎn)在橢圓上移動(dòng)時(shí),點(diǎn)
在某定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com