【題目】已知函數(shù),( 且)為定義域上的增函數(shù), 是函數(shù)的導(dǎo)數(shù),且的最小值小于等于0.
(1)求的值;
(2)設(shè)函數(shù),且,求證: .
【答案】(1);(2)見解析.
【解析】試題分析:(1)由為增函數(shù)可得, 恒成立,可轉(zhuǎn)化為恒成立,求的最小值.可得的值.
(2)由,可得,
令,構(gòu)造并求值域,可得,解不等式可得.
試題解析:(1),
由為增函數(shù)可得, 恒成立,則由 ,設(shè),則,若由和可知 在 上減,在 上增,在1處取得極小值即最小值,所以,所以,當(dāng)時(shí),易知,當(dāng)時(shí),則,這與矛盾,從而不能使得恒成立,所以.
由可得, ,即,由之前討論可知, ,當(dāng)時(shí), 恒成立 ,當(dāng)時(shí), ,綜上.
(2),因?yàn)?/span>,所以,所以
, ,
所以,
令, , , 在上增,在上減, ,所以,整理得,解得或(舍),所以得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓過橢圓的上頂點(diǎn)作圓的兩條切線分別與橢圓相交于兩點(diǎn)(不同于點(diǎn)),直線的斜率分別為.
(1)求橢圓的方程;
(2)當(dāng)變化時(shí),①求的值;②試問直線是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在R上定義運(yùn)算:ab=ab+2a+b,則滿足x(x﹣2)<0的實(shí)數(shù)x的取值范圍為( )
A.(0,2)
B.(﹣2,1)
C.(﹣∞,﹣2)∪(1,+∞)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線y2=2px(p>0)的焦點(diǎn)為F,已知A,B為拋物線上的兩個(gè)動點(diǎn),且滿足∠AFB=120°,過弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則 的最大值為( )
A.2
B.
C.1
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,
試求當(dāng)時(shí), 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù)f(x)=31+|x|﹣ ,則使得f(x)>f(2x﹣1)成立的x的取值范圍是( )
A.
B.
C.(﹣ , )
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在函數(shù) 的所有切線中,有且僅有一條切線l與直線y=x垂直.
(1)求a的值和切線l的方程;
(2)設(shè)曲線y=f(x)在任一點(diǎn)處的切線傾斜角為α,求α的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)已知兩點(diǎn)的坐標(biāo)分別為, ,點(diǎn)是直線上的一個(gè)動點(diǎn),且直線分別交(1)中點(diǎn)的軌跡于兩點(diǎn)(四點(diǎn)互不相同),證明:直線恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求在的最大值;
(2)討論函數(shù)的單調(diào)性;
(3)若在定義域內(nèi)恒成立,求實(shí)數(shù)的取值集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com