【題目】某省高考改革實施方案指出:該省高考考生總成績將由語文、數(shù)學(xué)、外語3門統(tǒng)一高考成績和學(xué)生自主選擇的學(xué)業(yè)水平等級性考試科目共同構(gòu)成.該省教育廳為了解正就讀高中的學(xué)生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.如圖是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

1)根據(jù)已知條件與等高條形圖完成下面的2×2列聯(lián)表,并判斷我們能否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?

贊成

不贊成

合計

城鎮(zhèn)居民

農(nóng)村居民

合計

2)利用分層抽樣從持不贊成意見家長中抽取5名參加學(xué)校交流活動,從中選派2名家長發(fā)言,求恰好有1名城鎮(zhèn)居民的概率.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】1)表見解析,沒有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”;(2

【解析】

1)根據(jù)題意填寫列聯(lián)表,計算,對照臨界值得出結(jié)論;

2)利用分層抽樣法求出抽取的城鎮(zhèn)居民和農(nóng)村居民數(shù).

解:(1)根據(jù)題意填寫列聯(lián)表如下;

贊成

不贊成

合計

城鎮(zhèn)居民

30

15

45

農(nóng)村居民

45

10

55

合計

75

25

100

由表中數(shù)據(jù)計算,

所以沒有的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”;

2)利用分層抽樣從持“不贊成”意見家長中抽取5人,則城鎮(zhèn)居民有3人,記為、、;

農(nóng)村居民有2人,記為、;從這5人中選2人,基本事件為:

、、、、、、、10種不同取法,

恰好有1名城鎮(zhèn)居民的基本事件為、、、6種,

故所求的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程,曲線的參數(shù)方程;

(2)若分別為曲線,上的動點,求的最小值,并求取得最小值時,點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求的極值;

2)設(shè),對任意都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a為常數(shù),函數(shù)fx)=xlnxax)有兩個極值點x1x2x1x2).

1)求a的取值范圍;

2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),且.

(1)a的值及f(x)的定義域;

(2)f(x)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點.如果函數(shù)存在不動點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為萬元,每生產(chǎn)萬件,需另投入流動成本為萬元,在年產(chǎn)量不足萬件時,(萬元),在年產(chǎn)量不小于萬件時,(萬元).通過市場分析,每件產(chǎn)品售價為元時,生產(chǎn)的商品能當(dāng)年全部售完.

1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;

2)當(dāng)產(chǎn)量為多少時利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標(biāo)方程為

1)求直線的普通方程和圓的直角坐標(biāo)方程;

2)設(shè)圓與直線交于,兩點,若點的坐標(biāo)為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,.

(Ⅰ)求證:;

(Ⅱ)若平面平面,且直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案