今年年初,我國(guó)多個(gè)地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產(chǎn)生了巨大的威脅.私家車(chē)的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開(kāi)私家車(chē),盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實(shí)施了機(jī)動(dòng)車(chē)車(chē)尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)“車(chē)輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 6 9 6 3 4
(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;

(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行進(jìn)行追蹤調(diào)查,記選中的4人中不贊成“車(chē)輛限行”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,頻率分布直方圖
專(zhuān)題:概率與統(tǒng)計(jì)
分析:(Ⅰ)由已知條件能求出圖中各組的縱坐標(biāo),由此能完成被調(diào)查人員的頻率分布直方圖.
(Ⅱ)ξ的所有可能取值為:0,1,2,3,分別求出p(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
解答: 解:(Ⅰ)各組的頻率分別是0.1,0.2,0.3,0.2,0.1,0.1.…(2分)
所以圖中各組的縱坐標(biāo)分別是0.01,0.02,0.03,0.02,0.01,0.01.…(4分)
∴被調(diào)查人員的頻率分布直方圖如右圖:…(5分)
(Ⅱ)ξ的所有可能取值為:0,1,2,3…(6分)
p(ξ=0)=
C
2
4
C
2
5
C
2
6
C
2
10
=
15
75
,
P(ξ=1)=
C
1
4
C
2
6
C
2
5
C
2
10
+
C
2
4
 
 
C
2
5
C
1
4
C
1
6
C
2
10
=
34
75

P(ξ=2)=
C
1
4
C
2
5
C
1
4
C
1
6
C
2
10
+
C
2
4
C
2
5
C
2
4
C
2
10
=
22
75
,
P(ξ=3)=
C
1
4
C
2
5
C
2
4
C
2
10
=
4
75
,…(10分)
∴ξ的分布列是:
ξ 0 1 2 3
P
15
75
34
75
22
75
4
75
…(11分)
∴ξ的數(shù)學(xué)期望Eξ=
15
75
+1×
34
75
+2×
22
75
+3×
4
75
=
6
5
.…(12分)
點(diǎn)評(píng):本題考查頻率直方圖的作法,考查隨機(jī)變量ξ的分布列和數(shù)學(xué)期望,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)將100名高一新生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人,吳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教學(xué)實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示.記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.
(1)在乙班樣本的20個(gè)個(gè)體中,從不低于80分的成績(jī)中隨機(jī)抽取2個(gè),記隨機(jī)變量ξ為抽到“成績(jī)優(yōu)秀”的個(gè)數(shù),求ξ的分布列及數(shù)學(xué)期望Eξ;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?
 甲班(A方式)乙班(B方式)總計(jì)
成績(jī)優(yōu)秀   
成績(jī)不優(yōu)秀   
總計(jì)   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={3,6,k2+3k+5},A={3,k+8},且∁UA={4m-5},求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知U=R,集合M={x|x≤a-2或x≥a+3},N={x|-1≤x≤2}.
(1)若a=0,求(∁UM)∩(∁UN);
(2)若M∩N=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,射線(xiàn)OA、OB關(guān)于x軸對(duì)稱(chēng),且∠AOB=60°,在射線(xiàn)OA、OB上分別有動(dòng)點(diǎn)P、Q滿(mǎn)足:S△POQ=9,設(shè)△POQ的重心為G.
(1)求G點(diǎn)的軌跡方程;
(2)點(diǎn)G到直線(xiàn)PQ距離的最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0,化簡(jiǎn):
(1)5a-1+5a+5a+1
(2)(a 
1
2
-b 
1
2
)÷(a 
1
4
-b 
1
4
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=
π
3

(1)求證:C1B⊥平面ABC;
(2)設(shè)
CE
CC1
(0≤λ≤1),且平面AB1E與BB1E所成的銳二面角的大小為30°,試求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0).直線(xiàn)AP,BP相交于點(diǎn)P,且它們的斜率之積是-
1
4
,記動(dòng)點(diǎn)P的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的方程;
(2)設(shè)Q是曲線(xiàn)C上的動(dòng)點(diǎn),直線(xiàn)AQ,BQ分別交直線(xiàn)l:x=4于點(diǎn)M,N,線(xiàn)段MN的中點(diǎn)為D,求直線(xiàn)QB與直線(xiàn)BD的斜率之積的取值范圍;
(3)在(2)的條件下,記直線(xiàn)BM與AN的交點(diǎn)為T(mén),試探究點(diǎn)T與曲線(xiàn)C的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx,g(x)=
1
2
ax2+bx(a≠0),h(x)=f(x)-g(x)
(Ⅰ)若a=3,b=2,求h(x)的極大值點(diǎn);
(Ⅱ)若b=2且h(x)存在單調(diào)遞減區(qū)間,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案