【題目】已知數(shù)列{an}的前n項和Snn2+pn,且a4a7,a12成等比數(shù)列.

1)求數(shù)列{an}的通項公式;

2)若bn,求數(shù)列{bn}的前n項和Tn

【答案】1an2n+1,nN*.(2Tn

【解析】

(1)根據(jù)公式an,初步計算出數(shù)列{an}的含有參數(shù)p的通項公式,然后將a4,a7a12代入通項公式,并根據(jù)等比中項的性質(zhì)列出關(guān)于p的方程,解出p的值,即可得到數(shù)列{an}的通項公式.

2)根據(jù)第(1)題的結(jié)果計算出Sn的表達式,以及數(shù)列{bn}的通項公式,然后將通項公式進行轉(zhuǎn)化,最后運用裂項相消法可計算出前n項和Tn

解:(1)由題意,當n1時,a1S11+p,

n≥2時,anSnSn1n2+pn﹣(n12pn1)=2n1+p,

∵當n1時,a11+p也滿足上式,

an2n1+p

a4,a7,a12成等比數(shù)列,∴,

,解得p2,

an2n+1nN*

2)由(1)知,Snn2+2n

1

1

,

Tnb1+b2++bn

[]+[]++[]

n

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若是函數(shù)的零點,是函數(shù)的零點.

1)比較的大。

2)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲,乙二人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到兩人中有一人取到白球即終止,每個球在每一次被取出的機會是等可能的.

(Ⅰ)求袋中原有白球的個數(shù):

(Ⅱ)求取球次數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年春季,某出租汽車公司決定更換一批新的小汽車以代替原來報廢的出租車,現(xiàn)有采購成本分別為萬元/輛和萬元/輛的兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車車型使用壽命頻數(shù)表如下:

1)填寫下表,并判斷是否有的把握認為出租車的使用壽命年數(shù)與汽車車型有關(guān)?

2)從的車型中各隨機抽取車,以表示這車中使用壽命不低于年的車數(shù),求的分布列和數(shù)學期望;

3)根據(jù)公司要求,采購成本由出租公司負責,平均每輛出租車每年上交公司萬元,其余維修和保險等費用自理.假設(shè)每輛出租車的使用壽命都是整數(shù)年,用頻率估計每輛出租車使用壽命的概率,分別以這輛出租車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負責人,會選擇采購哪款車型?

附:,.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在多面體中,正方形和矩形互相垂直,,分別是的中點,.

(Ⅰ)求證:平面.

(Ⅱ)在邊所在的直線上存在一點,使得平面,求的長;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsinθ2

1M為曲線C1上的動點,點P在線段OM上,且滿足,求點P的軌跡C2的直角坐標方程;

2)曲線C2上兩點與點Bρ2α),求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在傳染病學中,通常把從致病刺激物侵人機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期. 一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:

潛伏期(單位:天)

人數(shù)

1)求這1000名患者的潛伏期的樣本平均數(shù)x (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表) ;

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認為潛伏期與患者年齡有關(guān);

潛伏期

潛伏期

總計

歲以上(含歲)

歲以下

總計

3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?

附:

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,側(cè)面為菱形,且,點E,F分別為,的中點.求證:

1)平面平面

2平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個正方體的平面展開圖如圖所示,在這個正方體中,點是棱的中點,,分別是線段,(不包含端點)上的動點,則下列說法正確的是( )

A.在點的運動過程中,存在

B.在點的運動過程中,存在

C.三棱錐的體積為定值

D.三棱錐的體積不為定值

查看答案和解析>>

同步練習冊答案