【題目】東海水晶制品廠去年的年產(chǎn)量為10萬件,每件水晶產(chǎn)品的銷售價格為100元,固定成本為80.從今年起,工廠投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本.預計產(chǎn)量每年遞增1萬件,每件水晶產(chǎn)品的固定成本與科技成本的投入次數(shù)的關系是=.若水晶產(chǎn)品的銷售價格不變,次投入后的年利潤為萬元.①求出的表達式;問從今年算起第幾年利潤最高?最高利潤為多少萬元?

【答案】1)年利潤為

2)從今年算起第8年利潤最高,最高利潤為520萬元.

【解析】

解:(1). n次投入后,產(chǎn)量為10+n萬件,價格為100元,固定成本為元,

科技成本投入為100n, …………2

所以,年利潤為…………6

(2).(1)

=(萬元) …………9

當且僅當

時,利潤最高,最高利潤為520萬元.…………11

答:從今年算起第8年利潤最高,最高利潤為520萬元. …………12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱的底面是正三角形,側面為菱形,且,平面平面,、分別是、的中點.

1)求證:平面;

2)求證:;

3)求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 (a>b>0)的左焦點為F上頂點為B. 已知橢圓的離心率為,A的坐標為,.

I)求橢圓的方程;

II)設直線l 與橢圓在第一象限的交點為P,l與直線AB交于點Q. (O為原點) k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為擔任班主任的教師辦理手機語音月卡套餐,為了解通話時長,采用隨機抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.

(1)求圖中的值;

(2)估計該校擔任班主任的教師月平均通話時長的中位數(shù);

(3)在這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在平行四邊形中,邊的中點,將沿折起,使點到達點的位置,且

(1)求證; 平面平面

(2)若平面和平面的交線為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓及直線.

(1)證明:不論取什么實數(shù),直線與圓C總相交;

(2)求直線被圓C截得的弦長的最小值及此時的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,是等邊三角形,四邊形ABCD是矩形,,F為棱PA上一點,且,MAD的中點,四棱錐的體積為

1)若,NPB的中點,求證:平面平面PCD;

2)在(Ⅰ)的條件,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若存在實數(shù)使得則稱是區(qū)間一內(nèi)點.

(1)求證:的充要條件是存在使得是區(qū)間一內(nèi)點;

(2)若實數(shù)滿足:求證:存在,使得是區(qū)間一內(nèi)點;

(3)給定實數(shù),若對于任意區(qū)間,是區(qū)間的一內(nèi)點,是區(qū)間的一內(nèi)點,且不等式和不等式對于任意都恒成立,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】禽流感一直在威脅我們的生活,某疾病控制中心為了研究禽流感病毒繁殖個數(shù)(個)隨時間(天)變化的規(guī)律,收集數(shù)據(jù)如下:

天數(shù)

1

2

3

4

5

6

繁殖個數(shù)

6

12

25

49

95

190

作出散點圖可看出樣本點分布在一條指數(shù)型函數(shù)的周圍.

保留小數(shù)點后兩位數(shù)的參考數(shù)據(jù):

,,,,,,,其中

(1)求出關于的回歸方程(保留小數(shù)點后兩位數(shù)字);

(2)已知,估算第四天的殘差.

參考公式:

查看答案和解析>>

同步練習冊答案