8.若$z=\frac{{{{(1+i)}^4}{{(-1-\sqrt{3}i)}^7}}}{{{{(1-i)}^{12}}}}$,則|z|=8.

分析 利用復(fù)數(shù)的運(yùn)算法則、棣莫佛定理即可得出.

解答 解:∵(1+i)4=(2i)2=-4,(1-i)12=[(1-i)2]6=(-2i)6=-64.
$(-1-\sqrt{3}i)^{7}$=$(-2)^{7}(cos\frac{π}{3}+isin\frac{π}{3})^{7}$=-128×$(cos\frac{7π}{3}+isin\frac{7π}{3})$=-128$(\frac{1}{2}+\frac{\sqrt{3}}{2}i)$=-64$(1+\sqrt{3}i)$.
∴z=$\frac{-4×[-64(1+\sqrt{3}i)]}{-64}$=-4-4$\sqrt{3}$i.
∴|z|=$\sqrt{{4}^{2}+(-4\sqrt{3})^{2}}$=8.
故答案為:8.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、棣莫佛定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為雙曲線右支上一點(diǎn),若|PF1|2=8a|PF2|,則雙曲線離心率的取值范圍是( 。
A.(1,3]B.[3,+∞)C.(0,3)D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)全集為R,集合A={x|2x2-x-6≥0},B={x|log2x≤2}.
(1)分別求A∩B和(∁RB)∪A;
(2)已知C={x|a<x<a+1}且C⊆B,求實(shí)數(shù)a的取值范圍構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=2x-\frac{a}{x}$,且f(1)=3
(1)求a的值;
(2)判斷函數(shù)的奇偶性;
(3)證明函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知P(1,3-a),Q(-a,2),且向量|$\overrightarrow{PQ}$|=2,則實(shí)數(shù)a的值是±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如下表,f(x)的導(dǎo)函數(shù) f′(x)的圖象如圖所示.
x-1045
f(x)1221
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)的值域為[1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③若x∈[-1,t]時,f(x)的最大值是2,則t的最大值為4;
④當(dāng)1<a<2時,函數(shù)y=f(x)-a有4個零點(diǎn)
其中是真命題的是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若sinα=$\frac{\sqrt{3}}{3}$,則cos2α=( 。
A.$-\frac{2}{3}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列四個命題:
①函數(shù)y=|x|與函數(shù)$y={(\sqrt{x})^2}$表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標(biāo)系的原點(diǎn);
③若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4];
④函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移一個單位得到;
⑤設(shè)函數(shù)f(x)是在區(qū)間[a,b]上圖象連續(xù)的函數(shù),且f(a)•f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實(shí)根;
其中正確命題的序號是④⑤.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x-2≤0\\ x+y-2≥0\end{array}\right.$,則z=x-2y的最大值為2.

查看答案和解析>>

同步練習(xí)冊答案