(2012•茂名二模)(坐標系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),則曲線C上的點到直線x+y+2=0的距離的最大值為
3
2
2
+1
3
2
2
+1
分析:把曲線C的參數(shù)方程化為普通方程為 (x-1)2+y2=1,表示以(1,0)為圓心,半徑等于1的圓.求出圓心到直線的距離,將此距離再加上半徑,即得所求.
解答:解:∵曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),消去參數(shù)化為普通方程為 (x-1)2+y2=1,表示以(1,0)為圓心,半徑等于1的圓.
圓心到直線x+y+2=0的距離為
|1+0+2|
2
=
3
2
2
,故曲線C上的點到直線x+y+2=0的距離的最大值為
3
2
2
+1,
故答案為
3
2
2
+1.
點評:本題主要考查把參數(shù)方程化為普通方程的方法,點到直線的距離公式的應用,直線和圓的位置關(guān)系,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•茂名二模)已知函數(shù)f(x)=2
3
sin
x
3
cos
x
3
-2sin2
x
3

(1)求函數(shù)f(x)的值域;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,若f(C)=1,且b2=ac,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•茂名二模)已知全集U=R,則正確表示集合M={0,1,2}和N={x|x2+2x=0}關(guān)系的韋恩(Venn)圖是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•茂名二模)長方體的一個頂點上的三條棱長分別是3,4,x,且它的8個頂點都在同一球面上,這個球的表面積是125π,則x的值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•茂名二模)下列三個不等式中,恒成立的個數(shù)有(  )
①x+
1
x
≥2(x≠0);②
c
a
c
b
(a>b>c>0);③
a+m
b+m
a
b
(a,b,m>0,a<b).

查看答案和解析>>

同步練習冊答案