【題目】已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=1,公比q>0,其前n項(xiàng)和為Sn,且S1+a1,S3+a3,S2+a2成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足,Tn為數(shù)列{bn}的前n項(xiàng)和,若Tn≥m恒成立,求m的最大值.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:(Ⅰ)因?yàn)?/span>, , 成等差數(shù)列,所以,所以,因?yàn)閿?shù)列是等比數(shù)列,所以,又,所以,所以數(shù)列的通項(xiàng)公式;
(Ⅱ)因?yàn)?/span>恒成立,所以只需即可,由(Ⅰ)知,又,所以,利用錯(cuò)位相減法即可求得數(shù)列的前項(xiàng)和,通過(guò)的正負(fù)確定的單調(diào)性,進(jìn)而求得的最小值,即可求得的最大值.
試題解析:(Ⅰ)因?yàn)?/span>, , 成等差數(shù)列,
所以,
所以,
所以,
因?yàn)閿?shù)列是等比數(shù)列,
所以,
又,所以,
所以數(shù)列的通項(xiàng)公式;
(Ⅱ)因?yàn)?/span>恒成立,所以只需即可,
由(Ⅰ)知,又,
所以,
,
所以
故
所以
所以
所以
所以是遞增數(shù)列
所以
所以
所以的最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將函數(shù)y=f(x)的圖象按向量 平移后得到函數(shù) 的圖象,則函數(shù)y=f(x)單調(diào)遞增區(qū)間是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={x|x2﹣3x≤10},N={x|a﹣1≤x≤2a+1}.
(1)若a=2,求(RM)∪N;
(2)若M∪N=M,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga ,(a>0且a≠1).記F(x)=2f(x)+g(x).
(1)求函數(shù)F(x)的零點(diǎn);
(2)若關(guān)于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查觀眾對(duì)某電視劇的喜愛(ài)程度,某電視臺(tái)在甲乙兩地隨機(jī)抽取了8名觀眾做問(wèn)卷調(diào)查,得分結(jié)果如圖所示:
(1)計(jì)算甲地被抽取的觀眾問(wèn)卷得分的中位數(shù)和乙地被抽取的觀眾問(wèn)卷得分的平均數(shù);
(2)若從乙地被抽取的8名觀眾中邀請(qǐng)2人參加調(diào)研,求參加調(diào)研的觀眾中恰有1人的問(wèn)卷調(diào)查成績(jī)?cè)?0分以上(含90分)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)雙曲線x2﹣ =1的右支上一點(diǎn)P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點(diǎn)分別為M,N,則|PM|2﹣|PN|2的最小值為( )
A.10
B.13
C.16
D.19
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f( )+f( )等于( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和記為Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)當(dāng)t為何值時(shí),數(shù)列{an}為等比數(shù)列?
(2)在(1)的條件下,若等差數(shù)列{bn}的前n項(xiàng)和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線C:y2=4x,過(guò)焦點(diǎn)F斜率大于零的直線l交拋物線于A、B兩點(diǎn),且與其準(zhǔn)線交于點(diǎn)D.
(Ⅰ)若線段AB的長(zhǎng)為5,求直線l的方程;
(Ⅱ)在C上是否存在點(diǎn)M,使得對(duì)任意直線l,直線MA,MD,MB的斜率始終成等差數(shù)列,若存在求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com