已知橢圓的左,右兩個頂點分別為A、B.曲線C是以A、B兩點為頂點,離心率為的雙曲線.設點P在第一象限且在曲線C上,直線AP與橢圓相交于另一點T.

(1)求曲線C的方程;

(2)設P、T兩點的橫坐標分別為x1、x2,證明:x1·x2=1;

(3)設△TAB與△POB(其中O為坐標原點)的面積分別為S1與S2,且·≤15,求的取值范圍.

答案:
解析:


提示:

本小題主要考查橢圓與雙曲線的方程、直線與圓錐曲線的位置關系、函數(shù)最值等知識,考查數(shù)形結合、化歸與轉化、函數(shù)與方程的數(shù)學思想方法,以及推理論證能力和運算求解能力


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年上海市普陀區(qū)高三上學期12月月考文科數(shù)學試卷(解析版) 題型:填空題

已知橢圓的左、右兩個焦點分別為、,若經過的直線與橢圓相交于、兩點,則△的周長等于         .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省深圳市高三12月月考文科數(shù)學試卷(解析版) 題型:解答題

(14分)已知橢圓的左、右兩個頂點分別為.曲線是以、兩點為頂點,離心率為的雙曲線.設點在第一象限且在曲線上,直線與橢圓相交于另一點

(1)求曲線的方程;

(2)設點、的橫坐標分別為,證明:;

(3)設(其中為坐標原點)的面積分別為,且,求 的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省廣州市高三綜合測試(一)理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)

已知橢圓的左,右兩個頂點分別為.曲線是以、兩點為頂點,離心率為的雙曲線.設點在第一象限且在曲線上,直線與橢圓相交于另一點

(1)求曲線的方程;

(2)設、兩點的橫坐標分別為,證明:;

(3)設(其中為坐標原點)的面積分別為,且,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省高三第一次統(tǒng)考數(shù)學試卷 題型:解答題

((本小題滿分12分)

已知橢圓的左、右兩個焦點為,離心率為,又拋物線與橢圓有公共焦點

(1)求橢圓和拋物線的方程;

(2)設直線經過橢圓的左焦點且與拋物線交于不同兩點P、Q且滿足,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年北京市高三起點考試理科數(shù)學卷 題型:解答題

(本小題滿分12分)

    已知橢圓的左、右兩個焦點分別為F1、F2,離心率為,且拋物線與橢圓C1有公共焦點F2(1,0)。

   (1)求橢圓和拋物線的方程;

   (2)設A、B為橢圓上的兩個動點,,過原點O作直線AB的垂線OD,垂足為D,求點D為軌跡方程。

 

查看答案和解析>>

同步練習冊答案