已知函數(shù)f(x)=x2+2ax+b2
(1)若a是用正六面體骰子從1,2,3,4,5,6這六個數(shù)中擲出的一個數(shù),而b是用正四面體骰子從1,2,3,4這四個數(shù)中擲出的一個數(shù),求f(x)有零點的概率;
(2)若a是從區(qū)間[1,6]中任取的一個數(shù),而b是從區(qū)間[1,4]中任取的一個數(shù),求f(x)有零點的概率.
分析:(1)本題是一個古典概型,只要數(shù)出總事件數(shù)和符合條件的事件數(shù)就可以得到結(jié)果,總事件數(shù)共有6×4=24種情況,而符合條件的事件數(shù)是滿足判別式△=4a2-4b2≥0
(2)本題是一個幾何概型,要看出符合條件的事件對應的幾何圖形的面積和總事件數(shù)對應的面積,要求的概率就等于兩個的面積之比,把這兩個題目放在一起,目的是要求區(qū)分這兩種概型.
解答:解:(1)要想f(x)有零點,判別式△=4a2-4b2≥0
分類討論
當a=1時,b=1
以此類推
a=2    b=1,2
a=3    b=1,2,3
a=4    b=1,2,3,4
a=5    b=1,2,3,4
a=6    b=1,2,3,4
綜上共有18種可能都是符合要求的,
∵總事件數(shù)共有6×4=24種情況,
∴P=
18
24
=
3
4

(2)要想f(x)有零點,判別式△=4a2-4b2≥0
∴a2-b2≥0
則點(6,4)與a,b軸圍成的長方形面積就是所有選擇到的點的區(qū)域,
要想找a2-b2≥0的點,點的橫坐標就必須得大于等于縱坐標,
不難看出符合條件的面積是15-
1
2
×3×3
=
21
2

所有事件對應的面積是3×5=15
∴P=
21
2
15
=
7
10
點評:如何判斷一個試驗是否是古典概型還是幾何概型,分清在一個古典概型中某隨機事件包含的基本事件的個數(shù)和試驗中基本事件的總數(shù),是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案