【題目】已知函數(shù)().

1)討論的單調性;

2)若對恒成立,求的取值范圍.

【答案】(1)①當時,上單調遞減,在上單調遞增;②當時, 上單調遞增;

(2).

【解析】

(1)求出函數(shù)的定義域和導函數(shù), ,對討論,得導函數(shù)的正負,得原函數(shù)的單調性;(2)法一: 由

分別運用導函數(shù)得出函數(shù)(),的單調性,和其函數(shù)的最值,可得 ,可得的范圍;

法二:由,化為(),研究函數(shù)的單調性,可得的取值范圍.

(1)的定義域為,,

①當時,由,

上單調遞減,在上單調遞增;

②當時,恒成立,上單調遞增;

(2)法一: 由

(),則上單調遞減,

,即,

上單調遞增,上單調遞減,所以,即,

(*)

時,,(*)式恒成立,即恒成立,滿足題意

法二:由,,

(),則,上單調遞減,

,,即,

時,由(Ⅰ)知上單調遞增,恒成立,滿足題意

時,令,則,所以上單調遞減,

,當時,,,使得,

時,,即,

,不滿足題意,

綜上所述,的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校需從甲、乙兩名學生中選一人參加物理競賽,這兩名學生最近5次的物理競賽模擬成績如下表:

第一次

第二次

第三次

第四次

第五次

學生甲的成績(分)

80

85

71

92

87

學生乙的成績(分)

90

76

75

92

82

1)根據(jù)成績的穩(wěn)定性,現(xiàn)從甲、乙兩名學生中選出一人參加物理競賽,你認為選誰比較合適?

2)若物理競賽分為初賽和復賽,在初賽中有如下兩種答題方案:方案1:每人從5道備選題中任意抽出1道,若答對,則可參加復賽,否則被淘汰;方案2:每人從5道備選題中任意抽出3道,若至少答對其中2道,則可參加復賽,否則被淘汰.若學生乙只會5道備選題中的3道,則學生乙選擇哪種答題方案進入復賽的可能性更大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】老王有一塊矩形舊鐵皮,其中,,他想充分利用這塊鐵皮制作一個容器,他有兩個設想:設想1是沿矩形的對角線折起,使移到點,且在平面上的射影恰好在上,再利用新購鐵皮縫制其余兩個面得到一個三棱錐;設想2是利用舊鐵皮做側面,新購鐵皮做底面,縫制一個高為,側面展開圖恰為矩形的圓柱體;

1)求設想1得到的三棱錐中二面角的大小;

2)不考慮其他因素,老王的設想1和設想2分別得到的幾何體哪個容積更大?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知空間中不同直線mn和不同平面α、β,下面四個結論:

①若mn互為異面直線,mα,nα,mβ,nβ,則αβ

②若mn,mα,nβ,則αβ

③若nα,mα,則nm;

④若αβmα,nm,則nβ

其中正確的是( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代典籍《周易》用描述萬物的變化,每一卦由六爻組成.其中有一種起卦方法稱為金錢起卦法,其做法為:取三枚相同的錢幣合于雙手中,上下?lián)u動數(shù)下使錢幣翻滾摩擦,再隨意拋撒錢幣到桌面或平盤等硬物上,如此重復六次,得到六爻.若三枚錢幣全部正面向上或全部反面向上,就稱為變爻.若每一枚錢幣正面向上的概率為,則一卦中恰有兩個變爻的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.

1)求曲線的普通方程和極坐標方程;

2)設直線與曲線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國的嫦娥四號探測器,簡稱“四號星”,是世界首個在月球背面軟著陸和巡視探測的航天器.2019925日,中國科研人員利用嫦娥四號數(shù)據(jù)精確定位了嫦娥四號的著陸位置,并再現(xiàn)了嫦娥四號的落月過程,該成果由國際科學期刊《自然·通訊》在線發(fā)表.如圖所示,

現(xiàn)假設“四號星”沿地月轉移軌道飛向月球后,在月球附近一點變軌進入以月球球心為一個焦點的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在點第二次變軌進入仍以為一個焦點的橢圓軌道Ⅱ繞月飛行.若用分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用分別表示橢圓軌道Ⅰ和Ⅱ的長軸長,給出下列式子:①;②;③;④.其中正確的式子的序號是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記無窮數(shù)列的前n,,的最大項為,第n項之后的各項,,的最小項為

1)若數(shù)列的通項公式為,寫出,,并求數(shù)列通項公式;

2)若數(shù)列的通項公式為,判斷是否為等差數(shù)列,若是,求出公差;若不是,請說明理由;

3)若數(shù)列為公差大于零的等差數(shù)列,求證:是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級有甲,乙,丙三位學生,他們前三次月考的物理成績如表:

第一次月考物理成績

第二次月考物理成績

第三次月考物理成績

學生甲

80

85

90

學生乙

81

83

85

學生丙

90

86

82

則下列結論正確的是( 。

A. 甲,乙,丙第三次月考物理成績的平均數(shù)為86

B. 在這三次月考物理成績中,甲的成績平均分最高

C. 在這三次月考物理成績中,乙的成績最穩(wěn)定

D. 在這三次月考物理成績中,丙的成績方差最大

查看答案和解析>>

同步練習冊答案