Processing math: 100%
11.已知傾斜角60°為的直線l平分圓:x2+y2+2x+4y-4=0,則直線l的方程為(  )
A.3x-y+3+2=0B.3x+y+3+2=0C.3x-y+3-2=0D.3x-y-3+2=0

分析 傾斜角60°的直線方程,設(shè)為y=3x+b,利用直線平分圓的方程,求出結(jié)果即可.

解答 解:傾斜角60°的直線方程,設(shè)為y=3x+b.
圓:x2+y2+2x+4y-4=0化為(x+1)2+(y+2)2=9,圓心坐標(biāo)(-1,-2).
因?yàn)橹本€平分圓,圓心在直線y=3x+b上,所以-2=-3+b,解得b=3-2,
故所求直線方程為3x-y+3-2=0.
故選C.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查直線與圓的位置關(guān)系,直線方程的設(shè)法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3),且f(x)在區(qū)間(π6,π3)上有最小值,無最大值,則ω=( �。�
A.23B.143C.263D.383

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合U={0,1,2,3,4,5},M={0,3,5},N={1,4,5},則M∩(∁UN)=( �。�
A.{5}B.{0,3}C.{0,2,3,5}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.曲線y=sinx-2x在x=π處的切線方程為3x+y-π=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知P(0,-1)是橢圓C的下頂點(diǎn),F(xiàn)是橢圓C的右焦點(diǎn),直線PF與橢圓C的另一個(gè)交點(diǎn)為Q,滿足PF=7FQ
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,過左頂點(diǎn)A作斜率為k(k>0)的直線l1,l2,直線l1交橢圓C于點(diǎn)D,交y軸于點(diǎn)B.l2與橢圓C的一個(gè)交點(diǎn)為E,求|AD|+|AB||OE|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.由8個(gè)面圍成的幾何體,每個(gè)面都是正三角形,并且有四個(gè)頂點(diǎn)A,B,C,D在同一平面上,ABCD是邊長為15的正方形,則該幾何體的外接球的體積為( �。�
A.11252πB.33752πC.450πD.900π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)分別為A(2,4),B(1,-3),C(-2,1).
(1)求BC邊上的高所在的直線方程;
(2)設(shè)AC中點(diǎn)為D,求△DBC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平行四邊形ABCD中,AB+AD=( �。�
A.ACB.BDC.CAD.DB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若滿足x,y約束條件{xy+10x2y0x+2y20,則z=x+y的最大值為( �。�
A.32B.1C.-1D.-3

查看答案和解析>>

同步練習(xí)冊(cè)答案