【題目】已知數(shù)集具有性質(zhì):對(duì)任意的、兩數(shù)中至少有一個(gè)屬于.

1)分別判斷數(shù)集是否具有性質(zhì),并說(shuō)明理由;

2)證明:;

3)證明:當(dāng)時(shí),.

【答案】1不具有性質(zhì),具有性質(zhì),理由詳見(jiàn)解析;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.

【解析】

1)由定義直接判斷集合是否具有性質(zhì)

2)由已知得中至少有一個(gè)屬于,從而得到,再由,得到,由具有性質(zhì)可知,由此能證明;

3)當(dāng)時(shí),,從而,,由此能證明.

1)由于均不屬于數(shù)集,所以,數(shù)集不具有性質(zhì).

由于、、、、、、都屬于數(shù)集,所以,數(shù)集具有性質(zhì)

2數(shù)集具有性質(zhì),

所以,中至少有一個(gè)屬于,,所以,則,從而,故.

,所以,,故.

因?yàn),?shù)集具有性質(zhì)可知,.

又因?yàn)?/span>,,,,,.

所以,.

因此,;

3)由(2)知,,即,

因?yàn)?/span>,所以,,則,由于數(shù)集具有性質(zhì).

,可得,且,所以,,

,因此,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).

(1)寫(xiě)出曲線的極坐標(biāo)方程,并求交點(diǎn)的極坐標(biāo);

(2)射線與曲線分別交于點(diǎn)異于原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,若,且的圖象相鄰的對(duì)稱(chēng)軸間的距離不小于.

(1)求的取值范圍.

(2)若當(dāng)取最大值時(shí), ,且在中, 分別是角的對(duì)邊,其面積,求周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖為某校數(shù)學(xué)專(zhuān)業(yè)N名畢業(yè)生的綜合測(cè)評(píng)成績(jī)(百分制)頻率分布直方圖,已知80-90分?jǐn)?shù)段的學(xué)員數(shù)為21人。

(1)求該專(zhuān)業(yè)畢業(yè)總?cè)藬?shù)N和90-95分?jǐn)?shù)段內(nèi)的人數(shù);

(2)現(xiàn)欲將90-95分?jǐn)?shù)段內(nèi)的n名人分配到幾所學(xué)校,從中安排2人到甲學(xué)校去,若n人中僅有兩名男生,求安排結(jié)果至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),記的解集為

(1)求集合(用區(qū)間表示);

(2)當(dāng)時(shí),求函數(shù)的最小值;

(3)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與的圖象關(guān)于對(duì)稱(chēng),且,函數(shù)的定義域?yàn)?/span>

(1)求的值;

(2)若函數(shù)上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(3)若函數(shù)的最大值為2,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐三彩,中國(guó)古代陶瓷燒制工藝的珍品,它吸取了中國(guó)國(guó)畫(huà)、雕塑等工藝美術(shù)的特點(diǎn),在中國(guó)文化中占有重要的歷史地位,在中國(guó)的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,對(duì)唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史,某陶瓷廠在生產(chǎn)過(guò)程中,對(duì)仿制的100件工藝品測(cè)得其重量(單位: )數(shù)據(jù),將數(shù)據(jù)分組如下表:

1)在答題卡上完成頻率分布表;

2)以表中的頻率作為概率,估計(jì)重量落在中的概率及重量小于2.45的概率是多少?

3統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值例如區(qū)間的中點(diǎn)值是2.25作為代表.據(jù)此,估計(jì)這100個(gè)數(shù)據(jù)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市甲水廠每天生產(chǎn)萬(wàn)噸的生活用水,其每天固定生產(chǎn)成本為萬(wàn)元,居民用水的稅費(fèi)價(jià)格為每噸元,該市居民每天用水需求量是在(單位:萬(wàn)噸)內(nèi)的隨機(jī)數(shù),經(jīng)市場(chǎng)調(diào)查,該市每天用水需求量的頻率分布直方圖如圖所示,設(shè)(單位:萬(wàn)噸, )表示該市一天用水需求量(單位:萬(wàn)元)表示甲水廠一天銷(xiāo)售生活用水的利潤(rùn)(利潤(rùn)=稅費(fèi)收入-固定生產(chǎn)成本),注:當(dāng)該市用水需求量超過(guò)萬(wàn)噸時(shí),超過(guò)的部分居民可以用其他水廠生產(chǎn)的水,甲水廠只收成本廠供應(yīng)的稅費(fèi),該市每天用水需求量的概率用頻率估計(jì).

(1)求的值,并直接寫(xiě)出表達(dá)式;

(2)求甲水廠每天的利潤(rùn)不少于萬(wàn)元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案