從長度分別為1、2、3、4、5的五條線段中,任取三條構(gòu)成三角形的不同取法共有n種.在這些取法中,以取出的3條線段為邊可組成的鈍角三角形的個數(shù)為m,則
mn
=
 
分析:從5條線中任取3條不同取法有C53種,求出n=10,取出的3條線段能組成三角形的有(2,3,4);(3,4,5);(2,4,5)三種,其中能夠組成鈍角三角形的有2種結(jié)果,即m=2.
解答:解:從5條線段中任取3條,不同的取法有C53=10種,∴n=10;
根據(jù)三角形的任意兩邊和大于第三邊得:
取出的3條線段能組成三角形的有:(2,3,4);(3,4,5);(2,4,5)三種情況,
∵鈍角三角形中,其中一邊的平方大于另兩邊的平方和,
∴能夠組成鈍角三角形的有:(2,3,4),(2,4,5)兩種情況,∴m=2;
2
10
=
1
5

故答案是
1
5
點評:本題考查等可能事件的概率,本題解題的關(guān)鍵是看出條件中所給的五條線段可以組成三角形的有幾種,進而看出可以組成鈍角三角形的有幾種.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

從長度分別為1、2、3、4的四條線段中,任取三條的不同取法共有n種.在這些取法中,以取出的三條線段為邊可組成的三角形的個數(shù)為m,則
m
n
等于( 。
A、0
B、
1
4
C、
1
2
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從長度分別為1,2,3,4,5的五條線段中,任取三條的不同取法共有n種.在這些取法中,以取出的三條線段為邊可組成的鈍角三角形的個數(shù)為m,則
m
n
等于( 。
A、
1
10
B、
1
5
C、
3
10
D、
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從長度分別為1,2,3,4,5的五條線段中,任取三條,取出的三條線段為邊能構(gòu)成鈍角三角形的概率是
1
5
1
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從長度分別為1、2、3、4的四條線段中,任取三條的不同取法共有n種.在這些取法中,以取出的三條線段為邊可組成的三角形的個數(shù)為m,則m[]n?等于?(    )

    A.0            B.             C.             D.

查看答案和解析>>

同步練習冊答案