如圖,從點(diǎn)發(fā)出的光線沿平行于拋物線的軸的方向射向此拋物線上的點(diǎn)P,反射后經(jīng)焦點(diǎn)F又射向拋物線上的點(diǎn)Q,再反射后沿平行于拋物線的軸的方向射向直線再反射后又射回點(diǎn)M,則   x0=          
6.
提示:由拋物線方程得焦點(diǎn)坐標(biāo),進(jìn)而得到P,Q的坐標(biāo),再由直線QN與MN關(guān)于直線l對稱,求得x0
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓 的離心率為,點(diǎn),0),(0,),原點(diǎn)到直線的距離為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)為(,0),點(diǎn)在橢圓上(與、均不重合),點(diǎn)在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中,為兩等腰直角三角形,,C(a,0)(a>0).設(shè)的外接圓圓心分別為,

(Ⅰ)若⊙M與直線CD相切,求直線CD的方程;
(Ⅱ)若直線AB截⊙N所得弦長為4,求⊙N的標(biāo)準(zhǔn)方程;
(Ⅲ)是否存在這樣的⊙N,使得⊙N上有且只有三個點(diǎn)到直線AB的距離為,若存在,求此時⊙N的標(biāo)準(zhǔn)方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)雙曲線方程為,P為雙曲線上任意一點(diǎn),F(xiàn)為雙曲線的一個焦點(diǎn),討論以|PF|為直徑的圓與圓x2+y2=a2的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別為C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn)。求雙曲線C2的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)已知F1、F2是橢圓c1(a>b>0)的左、右焦點(diǎn),A為右頂點(diǎn),P為橢圓c1上任意一點(diǎn),且最大值的取值范圍是[c2,3c2],c2=a2-b2.(1)求橢圓c1離心率e的取值范圍;(2)設(shè)雙曲線c2以橢圓c1焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn),B是雙曲線c2在第一象限上任意一點(diǎn),當(dāng)橢圓c1離心率e取得最小值時,問是否存在正常數(shù)λ使∠BAF1=λ∠BF1A恒成立?若存在,求出λ值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知A、B是過拋物線焦點(diǎn)F的直線與拋物線的交點(diǎn),O是坐標(biāo)原點(diǎn),滿足,,則的值為            

查看答案和解析>>

同步練習(xí)冊答案