【題目】四棱柱ABCD﹣A1B1C1D1的三視圖如圖所示,則異面直線D1C與AC1所成的角為( )
A.30°
B.45°
C.60°
D.90°
【答案】D
【解析】解:由三視圖得,該四棱柱為直四棱柱且底面為直角梯形,
在直四棱柱ABCD﹣A1B1C1D1中,連結C1D,
∵DC=DD1 ,
∴四邊形DCC1D1是正方形,
∴DC1⊥D1C.
又AD⊥CD,AD⊥DD1 , DC∩DD1=D,
∴又AD⊥平面DCC1D1 , DC1平面DCC1D1 ,
∴AD⊥DC1
∵AD,DC1平面ADC1 , 且AD∩DC1=D,
∴DC1⊥平面ADC1 ,
又AC1平面ADC1 ,
∴DC1⊥AC1;
即異面直線D1C與AC1所成的角為90°,
故選:D.
【考點精析】關于本題考查的由三視圖求面積、體積和空間中直線與直線之間的位置關系,需要了解求體積的關鍵是求出底面積和高;求全面積的關鍵是求出各個側面的面積;相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】某種植基地將編號分別為1,2,3,4,5,6的六個不同品種的馬鈴薯種在如圖所示的
A | B | C | D | E | F |
這六塊實驗田上進行對比試驗,要求這六塊實驗田分別種植不同品種的馬鈴薯,若種植時要求編號1,3,5的三個品種的馬鈴薯中至少有兩個相鄰,且2號品種的馬鈴薯不能種植在A、F這兩塊實驗田上,則不同的種植方法有 ( )
A. 360種 B. 432種 C. 456種 D. 480種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+bx+c滿足f(2﹣x)=f(2+x),f(0)>0,且f(m)=f(n)=0(m≠n),則log4m﹣ n的值是( )
A.小于1
B.等于1
C.大于1
D.由b的符號確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科技公司生產一種手機加密芯片,其質量按測試指標劃分為:指標大于或等于為合格品,小于為次品.現(xiàn)隨機抽取這種芯片共件進行檢測,檢測結果統(tǒng)計如表:
測試指標 | |||||
芯片數量(件) |
已知生產一件芯片,若是合格品可盈利元,若是次品則虧損元.
(Ⅰ)試估計生產一件芯片為合格品的概率;并求生產件芯片所獲得的利潤不少于元的概率.
(Ⅱ)記為生產件芯片所得的總利潤,求隨機變量的分布列和數學期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】廣播電臺為了了解某地區(qū)的聽眾對某個戲曲節(jié)目的收聽情況,隨機抽取了100名聽眾進行調查,下面是根據調查結果繪制的聽眾日均收聽該節(jié)目的頻率分布直方圖,將日均收聽該節(jié)目時間不低于40分鐘的聽眾成為“戲迷”
(1)根據已知條件完成2×2列聯(lián)表,并判斷“戲迷”與性別是否有關?
“戲迷” | 非戲迷 | 總計 | |
男 | |||
女 | 10 | 55 | |
總計 |
附:K2= ,
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
(2)將上述調查所得到的頻率當作概率.現(xiàn)在從該地區(qū)大量的聽眾中,采用隨機抽樣的方法每次抽取1名聽眾,抽取3次,記被抽取的3名聽眾中“戲迷”的人數為X,若每次抽取的結果相互獨立,求X的分布列,數學期望及方差.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com