如圖,在由圓O:x2+y2=1和橢圓C:構成的“眼形”結(jié)構中,已知橢圓的離心率為,直線l與圓O相切于點M,與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)是否存在直線l,使得,若存在,求此時直線l的方程;若不存在,請說明理由.
解:(1)由題意可得,解得:a2=3,
所以所求橢圓C的方程為。
(2)假設存在直線l,使得,
易得當直線l垂直于x軸時,不符合題意,故設直線l的方程為y=kx+b,
由直線l與圓O相切,可得b2=k2+1, ①
把直線y=kx+b代入橢圓C:中,
整理得:
,


,②
由①②兩式得
故存在直線l,其方程為。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構成的“眼形”結(jié)構中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在由圓O:x2+y2=1和橢圓C:數(shù)學公式=1(a>1)構成的“眼形”結(jié)構中,已知橢圓的離心率為數(shù)學公式,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得數(shù)學公式數(shù)學公式=數(shù)學公式,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省青島市膠州一中高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,在由圓O:x2+y2=1和橢圓C:=1(a>1)構成的“眼形”結(jié)構中,已知橢圓的離心率為,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得=,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省溫州市八校聯(lián)考高三(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,在由圓O:x2+y2=1和橢圓C:=1(a>1)構成的“眼形”結(jié)構中,已知橢圓的離心率為,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得=,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案