【題目】己知函數(shù)是定義在R上的周期為2的奇函數(shù),時(shí),,的值是____.
【答案】
【解析】
根據(jù)題意,由函數(shù)的奇偶性與周期性分析可得f(﹣)=f(﹣)=﹣f(),結(jié)合解析式求出f()的值,又因?yàn)?/span>f(2019)=f(1+2×1009)=f(1)=0;據(jù)此分析可得答案.
解:根據(jù)題意,函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),
則f(﹣)=f(﹣)=﹣f(),
f(2019)=f(1+2×1009)=f(1),
又由函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),則有f(1)=f(﹣1)且f(1)=﹣f(﹣1),故f(1)=0,則f(2019)=0
,又由0<x<l時(shí),f(x)=4x,則f()==2,則f(﹣)=﹣f()=﹣2;
則=﹣2;
故答案為:﹣2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于點(diǎn)F,若BF=FC=3,DF=FE=2.
(1)求證:ADAB=AEAC;
(2)求線段BC的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且 ,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2
(1)證明:AG∥平面BDE;
(2)求平面BDE和平面BAG所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二項(xiàng)式的展開式中只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,且展開式中的第3項(xiàng)的系數(shù)是第4項(xiàng)的系數(shù)的3倍,則的值為( )
A. 4 B. 8 C. 12 D. 16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗(yàn),其次品率與日產(chǎn)量 (萬件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬件合格的產(chǎn)品以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).
(1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬元)表示為日產(chǎn)量 (萬件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sinωx(ω>0),將f(x)的圖象向左平移 個(gè)單位從長(zhǎng)度后,所得圖象與原函數(shù)的圖象重合,則ω的最小值為( )
A.
B.3
C.6
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明,則當(dāng)時(shí),等式左邊應(yīng)在的基礎(chǔ)上加上( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com