精英家教網 > 高中數學 > 題目詳情
(2013•湖南)如圖.在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=
2
,AA1=3,D是BC的中點,點E在棱BB1上運動.
(1)證明:AD⊥C1E;
(2)當異面直線AC,C1E 所成的角為60°時,求三棱錐C1-A1B1E的體積.
分析:(1)根據直三棱柱的性質,得AD⊥BB1,等腰△ABC中利用“三線合一”證出AD⊥BC,結合線面垂直判定定理,得AD⊥平面BB1C1C,從而可得AD⊥C1E;
(2)根據AC∥A1C1,得到∠EC1A1(或其補角)即為異面直線AC、C1E 所成的角.由A1C1⊥A1B1且A1C1⊥AA1,證出A1C1⊥平面AA1B1B,從而在Rt△A1C1E中得到∠EC1A1=60°,利用余弦的定義算出C1E=2A1C1=2
2
,進而得到△A1B1E面積為
2
,由此結合錐體體積公式即可算出三棱錐C1-A1B1E的體積.
解答:解:(1)∵直棱柱ABC-A1B1C1中,BB1⊥平面ABC,AD?平面ABC,∴AD⊥BB1
∵△ABC中,AB=AC,D為BC中點,∴AD⊥BC
又∵BC、BB1?平面BB1C1C,BC∩BB1=B
∴AD⊥平面BB1C1C,結合C1E?平面BB1C1C,可得AD⊥C1E;
(2)∵直棱柱ABC-A1B1C1中,AC∥A1C1,
∴∠EC1A1(或其補角)即為異面直線AC、C1E 所成的角
∵∠BAC=∠B1A1C1=90°,∴A1C1⊥A1B1,
又∵AA1⊥平面A1B1C1,可得A1C1⊥AA1
∴結合A1B1∩AA1=A1,可得A1C1⊥平面AA1B1B,
∵A1E?平面AA1B1B,∴A1C1⊥A1E
因此,Rt△A1C1E中,∠EC1A1=60°,可得cos∠EC1A1=
A 1C1
C1E
=
1
2
,得C1E=2A1C1=2
2

又∵B1C1=
A1C12+A 1B12
=2,∴B1E=
C 1E2-B1C12
=2
由此可得V C1-A1B1E=
1
3
S A1B1E×A1C1=
1
3
×
1
2
×2×
2
×
2
=
2
3
點評:本題給出直三棱柱的底面是等腰直角三角形,在已知側棱長和底面邊長的情況下證明線線垂直并求錐體的體積,著重考查了直棱柱的性質、空間線面垂直的判定與性質等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,點P是邊AB邊上異于AB的一點,光線從點P出發(fā),經BC,CA反射后又回到點P(如圖1),若光線QR經過△ABC的重心,則AP等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湖南)如圖,在半徑為
7
的⊙O中,弦AB,CD相交于點P,PA=PB=2,PD=1,則圓心O到弦CD的距離為
3
2
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湖南)某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形頂點)處都種了一株相同品種的作物.根據歷年的種植經驗,一株該種作物的年收獲Y(單位:kg)與它的“相近”作物株數X之間的關系如下表所示:
X 1 2 3 4
Y 51 48 45 42
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(I)從三角形地塊的內部和邊界上分別隨機選取一株作物,求它們恰 好“相近”的概率;
(II)在所種作物中隨機選取一株,求它的年收獲量的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湖南)如圖,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.
(Ⅰ)證明:AC⊥B1D;
(Ⅱ)求直線B1C1與平面ACD1所成的角的正弦值.

查看答案和解析>>

同步練習冊答案