已知數(shù)列{an}的前n項(xiàng)的和為Sn,且滿足a1=1,Sn+1=4an+2
(1)若bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列;
(2)求證數(shù)列{
an
2n
}是等差數(shù)列;
(3)若cn=
2n
an(3n+2)
,求數(shù)列{cn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用數(shù)列的遞推式,分別表示出Sn+1和Sn+2,兩式相減,整理可得an+2-2an+1=2an+1-4an,進(jìn)而把bn代入求得
bn+1
bn
=2,推斷出{bn}為首項(xiàng)為3,公比為2的等比數(shù)列.
(2)通過(guò)(1)利用等比數(shù)列的通項(xiàng)公式求得bn,然后利用bn=an+1-2an,整理出判斷出數(shù)列{
an
2n
}是等差數(shù)列.
(3)求出cn,拆項(xiàng)后利用裂項(xiàng)相消法可求得Tn
解答: 解:(1)∵a1=1,S2=4a1+2,得a2=S2-a1=3a1+2=5,
∴b1=5-2=3,
由Sn+1=4an+2,得Sn+2=4an+1+2,
兩式相減得Sn+2-Sn+1=4(an+1-an),即an+2=4(an+1-an),亦即an+2-2an+1=2an+1-4an,
∵bn=an+1-2an,∴bn+1=2bn,
bn+1
bn
=2,對(duì)n∈N*恒成立,
∴{bn}是首項(xiàng)為3,公比為2的等比數(shù)列;
(2)由(1)得bn=3•2n-1,∵bn=an+1-2an,
∴an+1-2an=3•2n-1
an+1
2n+1
-
an
2n
=
3
4
,
∴{
an
2n
}是首項(xiàng)為
1
2
,公差為
3
4
的等差數(shù)列;
an
2n
=
1
2
+(n-1)•
3
4
=
3n-1
4

an=
3n-1
4
2n

(3)由(2)得cn=
2n
3n-1
4
2n(3n+2)
=
4
(3n-1)(3n+2)
=
4
3
(
1
3n-1
-
1
3n+2
)
,
Tn=
4
3
(
1
2
-
1
5
+
1
5
-
1
8
+…+
1
3n-1
-
1
3n+2
)

=
4
3
(
1
2
-
1
3n+2
)
點(diǎn)評(píng):本題主要考查了由數(shù)列的遞推式求數(shù)列通項(xiàng)、等比數(shù)列和等差數(shù)列的性質(zhì)以及數(shù)列求和.考查了基礎(chǔ)知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}中,a1=1,點(diǎn)(
an
,an+1)(n∈N+)在函數(shù)y=x2+1的圖象上,數(shù)列{bn}的前n項(xiàng)和Sn=2-bn
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=
-1
an+1log2bn+1
,求數(shù)列{cn}的前n項(xiàng)和Tn
(3)若x2-
x
2
<cn對(duì)于n∈N+恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在x=-
2
3
與x=1時(shí)都取得極值
(1)求a,b的值和函數(shù)f(x)的單調(diào)區(qū)間;
(2)若直線y=b與函數(shù)y=f(x)的圖象有3個(gè)交點(diǎn),求c的取值范圍;
(3)若對(duì)x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2e-ax   x<0
a-x2
x+1
-1    x≥0
在R上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,a=
15
,b=2,向量
m
=(-1,
3
),
n
=(cosA,sinA),且
m
n
=1.
(1)求角A;
(2)求
1+sin2B
cos2B-sin2B
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(x,y)到定點(diǎn)F(5,0)的距離和它到定直線l:x=
16
5
的距離的比是常數(shù)
5
4
,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記者在街上隨機(jī)統(tǒng)計(jì)10位行人在2014年1月份內(nèi)接收到的垃圾短信的條數(shù),將數(shù)據(jù)整理如圖所示的莖葉圖:
(Ⅰ)計(jì)算這組數(shù)據(jù)的平均數(shù)及方差;
(Ⅱ)從這10人中隨機(jī)抽取2人,記這2人中在這個(gè)月內(nèi)接收到的垃圾短信少于10條的人數(shù)為X,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-ax+(a-1)lnx,a≥2

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:若a<5,則對(duì)任意x1,x2∈(0,+∞),
x
 
1
x2
,有
f(x1)-f(x2)
x1-x2
>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin2θ<0且|cosθ|=-cosθ,問(wèn)點(diǎn)P(tanθ,secθ)在第
 
象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案