設(shè)p在[0,5]上隨機(jī)地取值,則關(guān)于x的方程x2+px+1=0有實(shí)數(shù)根的概率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:由題意知方程的判別式大于等于零求出p的范圍,再判斷出所求的事件符合幾何概型,再由幾何概型的概率公式求出所求事件的概率.
解答:若方程x2+px+1=0有實(shí)根,則△=p2-4≥0,
解得,m≥2或 m≤-2;
∵記事件A:“P在[0,5]上隨機(jī)地取值,關(guān)于x的方程x2+px+1=0有實(shí)數(shù)根”,
由方程x2+px+1=0有實(shí)根符合幾何概型,
∴P(A)==
故選C.
點(diǎn)評(píng):本題考查了求幾何概型下的隨機(jī)事件的概率,即求出所有實(shí)驗(yàn)結(jié)果構(gòu)成區(qū)域的長(zhǎng)度和所求事件構(gòu)成區(qū)域的長(zhǎng)度,再求比值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,線段MN的兩個(gè)端點(diǎn)M、N分別在x軸、y 軸上滑動(dòng),|MN|=5,點(diǎn)P是線段MN上一點(diǎn),且
MP
=
2
3
PN
,點(diǎn)P隨線段MN的運(yùn)動(dòng)而變化.
(1)求點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)
OS
=
OA
+
OB
,是否存在這樣的直線l,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省溫州市三溪中學(xué)高二期中數(shù)學(xué)試卷(理科)(選修2-1)(解析版) 題型:解答題

如圖,線段MN的兩個(gè)端點(diǎn)M、N分別在x軸、y 軸上滑動(dòng),|MN|=5,點(diǎn)P是線段MN上一點(diǎn),且,點(diǎn)P隨線段MN的運(yùn)動(dòng)而變化.
(1)求點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè),是否存在這樣的直線l,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年浙江省寧波二中、溫州市永嘉十五中等三校聯(lián)考高二(下)期中數(shù)學(xué)試卷(選修2-1)(解析版) 題型:解答題

如圖,線段MN的兩個(gè)端點(diǎn)M、N分別在x軸、y 軸上滑動(dòng),|MN|=5,點(diǎn)P是線段MN上一點(diǎn),且,點(diǎn)P隨線段MN的運(yùn)動(dòng)而變化.
(1)求點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)(2,0)作直線l,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè),是否存在這樣的直線l,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案