已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線
于點,線段垂直平分線交于點,求點的軌跡的方程;
(3)當P不在軸上時,在曲線上是否存在兩個不同點C、D關(guān)于對稱,若存在,
求出的斜率范圍,若不存在,說明理由。
(Ⅰ) ;(Ⅱ)
(3)在曲線上不存在兩個不同點C、D關(guān)于對稱
本試題主要是考查了橢圓的方程求解以及直線與橢圓的位置關(guān)系的綜合運用。
(1)利用橢圓的幾何性質(zhì)和直線與圓相切得到橢圓的方程。
(2)∵MP=MF2,
∴動點M到定直線的距離等于它到定點F1(1,0)的距離,
∴動點M的軌跡是C為l1準線,F(xiàn)2為焦點的拋物線可知結(jié)論。
(3)設(shè)點的坐標,利用對稱性來分析證明不存在符合題意的結(jié)論。
解:(Ⅰ)∵  
∵直線相切,
  ∴ 
∵橢圓C1的方程是    
(Ⅱ)∵MP=MF2
∴動點M到定直線的距離等于它到定點F1(1,0)的距離,
∴動點M的軌跡是C為l1準線,F(xiàn)2為焦點的拋物線 ………………6分
∴點M的軌跡C2的方程為   …………7分
(3)顯然不與軸垂直,設(shè) (,), (,),且,則 =
若存在C、D關(guān)于對稱,則=-   ∵≠0,∴≠0
設(shè)線段的中點為,則=(+)=,=,
代入方程求得:=-( -)=(-)
-=-≠1∴ ≠()= ∴線段的中點不在直線上.所以在曲線上不存在兩個不同點C、D關(guān)于對稱
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓中,過焦點且垂直于長軸的直線被橢圓截得的線段長為,焦點到相應準線的
距離也為,則該橢圓的離心率為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知P、Q是橢圓3x2+5y2=1上滿足∠POQ=900的兩個動點,則|OP|2+|OQ|2=( 。
A.8B.C.D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)橢圓的離心率為=,點是橢圓上的一點,且點到橢圓兩焦點的距離之和為4.
(1)求橢圓的方程;
(2)橢圓上一動點關(guān)于直線的對稱點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.經(jīng)過點M(1,1)作直線l交橢圓于A、B兩點,且M為AB的中點,則直線l方程為                       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓上一點M到直線x+2y-10=0的距離的最小值為(    )
A.2B.C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作,其中圓心P的坐標為.(1) 若FC是的直徑,求橢圓的離心率;(2)若的圓心在直線上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)(注意:在試題卷上作答無效)
已知橢圓的左、右焦點分別為,若以為圓心,為半徑作圓,過橢圓上一點作此圓的切線,切點為,且的最小值不小于為
(1)求橢圓的離心率的取值范圍;
(2)設(shè)橢圓的短半軸長為,圓軸的右交點為,過點作斜率為的直線與橢圓相交于兩點,若,求直線被圓截得的弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓,順次連結(jié)橢圓的四個頂點,所得四邊形的內(nèi)切圓與長軸的兩交點正好是長軸的兩個三等分點,則橢圓的離心率等于(    ).
A.B.C.D.

查看答案和解析>>

同步練習冊答案