如圖,四棱錐P-ABCD,PA⊥平面ABCD,且PA=4,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AB=2,CD=1,AD=
2
,M,N分別為PD,PB的中點,平面MCN與PA交點為Q.
(Ⅰ)求PQ的長度;
(Ⅱ)求截面MCN與底面ABCD所成二面角的正弦值;
(Ⅲ)求點A到平面MCN的距離.
考點:點、線、面間的距離計算,與二面角有關的立體幾何綜合題
專題:空間角
分析:(Ⅰ)以A為坐標原點,AD,AB,AP為x,y,z正半軸,建立空間直角坐標系,利用向量法能求出PQ的長度.(Ⅱ)分別求出平面MCN的法向量和平面ABCD的法向量.由此利用向量法能求出截面MCN與底面ABCD所成二面角的正弦值.
(Ⅲ)由
AN
=(0,1,2)
,平面MCN的法向量
n1
=(
2
,1,1),利用向量法能求出點A到平面MCN的距離.
解答: (本小題滿分14分)
解:(Ⅰ)由題意以A為坐標原點,AD,AB,AP為x,y,z正半軸,
建立空間直角坐標系,
則有:A(0,0,0)、D(
2
,0,0)
、B(0,2,0)、
C(
2
,1,0)
、P(0,0,4)、M(
2
2
,0,2)
、N(0,1,2).
設Q(0,0,a),由于Q∈平面MCN,
∴存在實數(shù)λ,μ,使得
CQ
CM
CN
,
(-
2
,-1,a)=λ(-
2
2
,-1,2)+μ(-
2
,0,2)

-
2
=-
2
2
λ-
2
μ
-1=-λ
,得:
λ=1
μ=
1
2

于是a=2λ+2μ=3,|
PQ
|=1

∴PQ的長度是1.…(5分)
(Ⅱ)設平面MCN的法向量
n1
=(x,y,1)
,
n1
CM
=(x,y,1)•(-
2
2
,-1,2)=-
2
2
x-y+2=0
n1
CN
=(x,y,1)•(-
2
,0,2)=-
2
x+2=0
,
取x=
2
,得
n1
=(
2
,1,1)

由題意
n2
=(0,0,1)
為平面ABCD的法向量.
于是,cos<
n1
,
n2
>=
n1
n2
|
n1
|•|
n2
|
=
1
2

∴截面MCN與底面ABCD所成二面角的正弦值為
3
2
.…(10分)
(Ⅲ)設點A到平面MCN的距離為d,
AN
=(0,1,2)
,平面MCN的法向量
n1
=(
2
,1,1),
d=
|
AN
n1
|
|
n1
|
=
3
2

∴點A到平面MCN的距離為
3
2
.…(14分)
點評:本題考查線段長的求法,考查二面角的正弦值的求法,考查點到平面的距離的求法,解題時要認真審題,注意向量法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在如圖程序框圖中,輸入n=5,按程序運行后輸出的結果是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A=|f(x)|存在互不相等的正整數(shù)m,n,k,使得[f(n)]2=f(m)f(k),則不屬于集合A的函數(shù)是( 。
A、f(x)=2x-1
B、f(x)=x2
C、f(x)=2x+1
D、f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司銷售A、B、C三款手機,每款手機都有經(jīng)濟型和豪華型兩種型號,據(jù)統(tǒng)計12月份共銷售1000部手機(具體銷售情況見下表)
A款手機 B款手機 C款手機
經(jīng)濟型 200 x y
豪華型 150 160 z
已知在銷售1000部手機中,經(jīng)濟型B款手機銷售的頻率是0.21.
(Ⅰ)現(xiàn)用分層抽樣的方法在A、B、C三款手機中抽取50部,求在C款手機中抽取多少部?
(Ⅱ)若y≥136,z≥133,求C款手機中經(jīng)濟型比豪華型多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
ex
(x∈R),g(x)=
(2-x)ex
e2

(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)求證:當x>1時,函數(shù)y=g(x)的圖象恒在函數(shù)y=f(x)的圖象下方;
(Ⅲ)若k>0,求不等式f′(x)-k(1-x)f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(ωx-
π
6
)-2cos2
ω
2
x+1(ω>0).直線y=
3
與函數(shù)y=f(x)圖象相鄰兩交點的距離為π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,角A、B、C所對的邊分別是a、b、c,若點(
B
2
,0)是函數(shù)y=f(x)圖象的一個對稱中心,且b=3,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-(a+1)x+lnx,g(x)=x2-2bx-
5
4

(Ⅰ)當a=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當a<0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當a=
1
2
時,對任意x1∈(0,2],存在x2∈[1,2],使得f(x1)≤g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某種同型號的6瓶飲料中有2瓶已過了保質期.
(1)從6瓶飲料中任意抽取1瓶,求抽到?jīng)]過保質期的飲料的概率;
(2)從6瓶飲料中隨機抽取2瓶,求抽到已過保質期的飲料的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|-2≤x≤1}.
(Ⅰ)求a的值;  
(Ⅱ)若|f(x)-2f(
x
2
)|≤k恒成立,求k的取值范圍.

查看答案和解析>>

同步練習冊答案