【題目】一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)于下表中,通過散點(diǎn)圖可以看出樣本點(diǎn)分布在一條指數(shù)型函數(shù)y=的圖象的周圍.
(1)試求出y關(guān)于x的上述指數(shù)型的回歸曲線方程(結(jié)果保留兩位小數(shù));
(2)試用(1)中的回歸曲線方程求相應(yīng)于點(diǎn)(24,17)的殘差.(結(jié)果保留兩位小數(shù))
溫度x(°C) | 20 | 22 | 24 | 26 | 28 | 30 |
產(chǎn)卵數(shù)y(個) | 6 | 9 | 17 | 25 | 44 | 88 |
z=lny | 1.79 | 2.20 | 2.83 | 3.22 | 3.78 | 4.48 |
幾點(diǎn)說明:
①結(jié)果中的都應(yīng)按題目要求保留兩位小數(shù).但在求時請將的值多保留一位即用保留三位小數(shù)的結(jié)果代入.
②計(jì)算過程中可能會用到下面的公式:回歸直線方程的斜率==,截距.
③下面的參考數(shù)據(jù)可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.
【答案】(1);(2)
【解析】
(1)由已知條件結(jié)合計(jì)算公式求出的值,繼而得到回歸直線方程
(2)由(1)得回歸直線方程,代入點(diǎn)(24,17)計(jì)算出殘差
(1)設(shè)z關(guān)于x的回歸直線方程為
∴=≈
保留三位小數(shù):≈0.265,保留兩位小數(shù):≈0.27
∴=≈3.05-0.265×25≈-3.58
∴z=lny關(guān)于x的回歸直線方程為=0.27x-3.58
∴y關(guān)于x的指數(shù)型的回歸曲線方程為=
(2)相應(yīng)于點(diǎn)(24,17)的殘差=y-=17-=17-
≈17-=17-18.17=-1.17
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,AB=2AD,為DC的中點(diǎn),將△ADM沿AM折起使平面ADM⊥平面ABCM.
(1)當(dāng)AB=2時,求三棱錐的體積;
(2)求證:BM⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,,分別為橢圓的左、右焦點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與直線:有公共點(diǎn)時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)的區(qū)人大代表有教師6人,分別來自甲、乙、丙、丁四個學(xué)校,其中甲校教師記為,乙校教師記為,丙校教師記為,丁校教師記為.現(xiàn)從這6名教師代表中選出3名教師組成十九大報(bào)告宣講團(tuán),要求甲、乙、丙、丁四個學(xué)校中,每校至多選出1名.
(1)請列出十九大報(bào)告宣講團(tuán)組成人員的全部可能結(jié)果;
(2)求教師被選中的概率;
(3)求宣講團(tuán)中沒有乙校教師代表的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合,B={y|y=2x,x≤1},C={x|2a<x<a+1}.
(1)求A∩UB;
(2)若C(A∪B),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,且將全班25人的成績記為由右邊的程序運(yùn)行后,輸出.據(jù)此解答如下問題:
(Ⅰ)求莖葉圖中破損處分?jǐn)?shù)在[50,60),[70,80),[80,90)各區(qū)間段的頻數(shù);
(Ⅱ)利用頻率分布直方圖估計(jì)該班的數(shù)學(xué)測試成績的眾數(shù),中位數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).
(1)求拋物線的方程;
(2)若直線的斜率之積為,求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(常數(shù)).
(1)討論的單調(diào)性;
(2)設(shè)是的導(dǎo)函數(shù),求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com