我校某同學(xué)設(shè)計了一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”來慶祝數(shù)學(xué)學(xué)科節(jié)的成功舉辦.其中、是過拋物線焦點(diǎn)的兩條弦,且其焦點(diǎn),,點(diǎn)為軸上一點(diǎn),記,其中為銳角.
(1)求拋物線方程;
(2)當(dāng)“蝴蝶形圖案”的面積最小時求的大小.
(1);(2).
解析試題分析:本題主要考查拋物線的定義和方程、向量的數(shù)量積、三角函數(shù)的最值等基礎(chǔ)知識,同時考查解析幾何的基本思想方法和運(yùn)算求解能力.第一問,根據(jù)拋物線的標(biāo)準(zhǔn)方程,利用焦點(diǎn)坐標(biāo)直接寫出拋物線方程;第二問,設(shè)出,根據(jù)已知條件寫出A點(diǎn)坐標(biāo),由于點(diǎn)A在拋物線上,所以將點(diǎn)A坐標(biāo)代入到拋物線方程中,利用整理出的方程求出,同理求出,,,利用這4個邊長求“蝴蝶形圖案”的面積得出三角函數(shù)式,利用換元法求函數(shù)最值.
試題解析:(1)由拋物線焦點(diǎn)得,拋物線方程為.
(2)設(shè),則點(diǎn),
所以,,即.
解得,
同理:,,,
“蝴蝶形圖案”的面積,
令,,∴,
則,∴時,即,“蝴蝶形圖案”的面積為8.
考點(diǎn):1.拋物線的標(biāo)準(zhǔn)方程;2.兩點(diǎn)間距離公式;3.換元法求函數(shù)最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
P為圓A:上的動點(diǎn),點(diǎn).線段PB的垂直平分線與半徑PA相交于點(diǎn)M,記點(diǎn)M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當(dāng)點(diǎn)P在第一象限,且時,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C的方程為-=1(a>0,b>0),離心率e=,頂點(diǎn)到漸近線的距離為.
(1)求雙曲線C的方程;
(2)如圖,P是雙曲線C上一點(diǎn),A、B兩點(diǎn)在雙曲線C的兩條漸近線上,且分別位于第一、二象限.若=λ,λ∈.求△AOB的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)A為圓上一動點(diǎn),AN軸于N,若動點(diǎn)Q滿足(其中m為非零常數(shù)),試求動點(diǎn)的軌跡方程.
(3)在(2)的結(jié)論下,當(dāng)時,得到動點(diǎn)Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
過橢圓的左頂點(diǎn)作斜率為2的直線,與橢圓的另一個交點(diǎn)為,與軸的交點(diǎn)為,已知.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在直角坐標(biāo)系xOy中,點(diǎn)P到拋物線C:y2=2px(p>0)的準(zhǔn)線的距離為.點(diǎn)M(t,1)是C上的定點(diǎn),A,B是C上的兩動點(diǎn),且線段AB被直線OM平分.
(1)求p,t的值;
(2)求△ABP面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點(diǎn),已知m=(ax1,by1),n=(ax2,by2),若m⊥n且橢圓的離心離e=,又橢圓經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓E:+=1(a>b>0)的離心率e=,a2與b2的等差中項(xiàng)為.
(1)求橢圓E的方程.
(2)A,B是橢圓E上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn)P(t,0),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合與在第一和第四象限的交點(diǎn)分別為.
(1)若△AOB是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率;
(3)點(diǎn)為橢圓上的任一點(diǎn),若直線、分別與軸交于點(diǎn)和,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com