【題目】在平面四邊形中,已知的面積是的面積的3倍,若存在正實(shí)數(shù)使得成立,則的最小值為( )
A.B.C.D.
【答案】D
【解析】
由△ACB面積是△ADC面積的3倍,結(jié)合三角形的面積公式可知3DF=BE,然后結(jié)合相似三角形的性質(zhì)可轉(zhuǎn)化為3,然后結(jié)合向量加減法的三角形法則可用,表示,然后根據(jù)向量共線定理可設(shè),結(jié)合已知可求=10,然后由,利用基本不等式可求
根據(jù)題意,如圖,連接AC、BD,設(shè)AC與BD交于點(diǎn)O,過點(diǎn)B作BE⊥AC與點(diǎn)E,過點(diǎn)D作DF⊥AC與點(diǎn)F,
若△ACB面積是△ADC面積的3倍,即3DF=BE,
根據(jù)相似三角形的性質(zhì)可知,3,
∴3()=,
∴,
設(shè)=,
∵=,
∴
∴=10,
∴
當(dāng)且僅當(dāng)且=10,即x=時(shí)取等號(hào)
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次田徑比賽中,35名運(yùn)動(dòng)員的成績(單位:分鐘)的莖葉圖如圖所示。
若將運(yùn)動(dòng)員按成績由好到差編為1—35號(hào),再用系統(tǒng)抽樣方法從中抽取5人,則其中成績?cè)趨^(qū)間上的運(yùn)動(dòng)員人數(shù)為
A.6B.5C.4D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:
(Ⅰ)求,的值;
(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?
參考公式及數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若數(shù)列中存在,其中,,,,及均為正整數(shù),且(),則稱數(shù)列為“數(shù)列”.
(1)若數(shù)列的前項(xiàng)和,求證:是“數(shù)列”;
(2)若是首項(xiàng)為1,公比為的等比數(shù)列,判斷是否是“數(shù)列”,說明理由;
(3)若是公差為()的等差數(shù)列且(),,求證:數(shù)列是“數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求證:;
(Ⅱ)如果恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”.類似的,我們?cè)谄矫嫦蛄考?/span>上也可以定義一個(gè)稱“序”的關(guān)系,記為“”.定義如下:對(duì)于任意兩個(gè)向量,“”當(dāng)且僅當(dāng)“”或“”。按上述定義的關(guān)系“”,給出如下四個(gè)命題:
①若,則;
②若,則;
③若,則對(duì)于任意;
④對(duì)于任意向量,若,則。
其中真命題的序號(hào)為__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓F:和拋物線,過F的直線與拋物線和圓依次交于A、B、C、D四點(diǎn),求的值是( )
A.1B.2C.3D.無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足:對(duì)任意實(shí)數(shù)以及定義中任意兩數(shù)、(),恒有,則稱是下凸函數(shù).
(1)證明:函數(shù)是下凸函數(shù);
(2)判斷是不是下凸函數(shù),并說明理由;
(3)若是定義在上的下凸函數(shù),常數(shù),滿足:,,且,求證:,并求在上的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com