【題目】如圖,四棱錐中,底面為梯形, 底面, .過作一個(gè)平面使得平面.

(1)求平面將四棱錐分成兩部分幾何體的體積之比;

(2)若平面與平面之間的距離為,求直線與平面所成角的正弦值.

【答案】1.2

【解析】試題分析:(1)設(shè)平面與直線分別交于,因?yàn)?/span>平面,所以可得分別是的中點(diǎn),根據(jù)棱錐的體積公式可得從而可得平面將四棱錐分成兩部分幾何體的體積之比;(2)因?yàn)?/span>兩兩垂直,以軸, 軸, 軸建立空間直角坐標(biāo)系,分別求出直線的方向向量以及平面的一個(gè)法向量,利用空間向量夾角余弦公式可得直線與平面所成角的正弦值.

試題解析:(1)記平面與直線.

因?yàn)?/span>,所以.

由已知條件易知,又因.

所以

可得

所以.

即平面將四棱錐分成兩部分幾何體的體積之比為.

(2)建立直角坐標(biāo)系,記

因?yàn)槠矫?/span>的法向量

設(shè)

得平面.

由條件易知點(diǎn)到平面距離.即.

所以.直線與平面所成角滿足

【方法點(diǎn)晴】本題主要考查棱錐的體積公式以及利用空間向量線面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知拋物線,過點(diǎn)任作一直線與相交于兩點(diǎn),過點(diǎn)軸的平行線與直線相交于點(diǎn)為坐標(biāo)原點(diǎn))

1)證明: 動(dòng)點(diǎn)在定直線上;

2)作的任意一條切線 (不含), 與直線相交于點(diǎn)與(1)中的定直線相交于點(diǎn)

證明: 為定值, 并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線G:x2=2py(p>0),直線y=k(x﹣1)+2與拋物線G相交A(x1 , y1),B(x2 , y2)(x1<x2),過A,B點(diǎn)分別作拋物線G的切線L1 , L2 , 兩切線L1 , L2相交H(x,y),
(1)若k=1,有 L1⊥L2 , 求拋物線G的方程;
(2)若p=2,△ABH的面積為S1 , 直線AB與拋物線G圍成封閉圖形的面積為S2 , 證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)從參加環(huán)保知識(shí)竟賽的學(xué)生中抽取了部分學(xué)生的成績進(jìn)行分析,不過作好的莖葉圖和頻率分布直方圖因故均受到不同程度的損壞,其可見部分信息如圖所示,據(jù)此解答下列問題:

(1)求抽取學(xué)生成績的中位數(shù),并修復(fù)頻率分布直方圖;

(2)根據(jù)修復(fù)的頻率分布直方圖估計(jì)該中學(xué)此次環(huán)保知識(shí)競賽的平均成績。(以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)命題:指數(shù)函數(shù)上單調(diào)遞增.命題:函數(shù)的定義域?yàn)?/span>.若“”為假,“為真,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個(gè),生產(chǎn)一個(gè)衛(wèi)兵需分鐘,生產(chǎn)一個(gè)騎兵需分鐘,生產(chǎn)一個(gè)傘兵需分鐘,已知總生產(chǎn)時(shí)間不超過小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤元,生產(chǎn)一個(gè)騎兵可獲利潤元,生產(chǎn)一個(gè)傘兵可獲利潤元.

(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)與騎兵個(gè)數(shù)表示每天的利潤(元);

(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題中,正確命題的個(gè)數(shù)是( )
①命題“若x=y,則sinx=siny”的逆否命題是真命題;
②已知α,β是不同的平面,m,n是不同的直線,m∥α,n∥β,α⊥β,則m⊥n;
③直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要條件是 ;

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,平面平面, , 的中點(diǎn), 的中點(diǎn), 在棱上.

)當(dāng)的中點(diǎn)時(shí),證明: 平面

)求證: 平面

)是否存在點(diǎn)使得平面?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】明天小強(qiáng)要參加班里組織的郊游活動(dòng),為了做好參加這次郊游的準(zhǔn)備工作,他測算了如下數(shù)據(jù):整理床鋪、收拾攜帶物品8分鐘,洗臉、刷牙7分鐘,煮牛奶15分鐘,吃早飯10分鐘,查公交線路圖9分鐘,給出差在外的父親發(fā)手機(jī)短信6分鐘,走到公共汽車站10分鐘,等公共汽車10分鐘.小強(qiáng)粗略地算了一下,總共需要75分鐘,為了趕上7:50的公共汽車,小強(qiáng)決定6:30起床,不幸的是他一下子睡到6:50,請你幫小強(qiáng)安排一下時(shí)間,畫出一份郊游出行前時(shí)間安排流程圖,使他還能來得及參加此次郊游.

查看答案和解析>>

同步練習(xí)冊答案