如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將折起,使得B與C重合于O.

(Ⅰ)設(shè)Q為AE的中點,證明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因為Q為AE的中點,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二問中,作MNAE,垂足為N,連接DN

因為AOEO, DOEO,EO平面AOD,所以EODM

,因為AODM ,DM平面AOE

因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中點M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因為Q為AE的中點,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足為N,連接DN

因為AOEO, DOEO,EO平面AOD,所以EODM

,因為AODM ,DM平面AOE

因為MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值為

 

【答案】

(1)見解析(2)二面角O-AE-D的平面角的余弦值為

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖放置的邊長為1的正三角形PAB沿x軸滾動,設(shè)頂點A(x,y)的縱坐標與橫坐標的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是
 
;(說明:“正三角形PAB沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點A為中心順時針旋轉(zhuǎn),當頂點B落在x軸上時,再以頂點B為中心順時針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負方向逆時針滾動)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•洛陽一模)如圖放置的邊長為1的正三角形ABC沿x軸的正方向滾動,設(shè)頂點A(x,y)的縱坐標與橫坐標的函數(shù)關(guān)系是y=f(x).則f(x)在兩個相鄰零點間的圖象與x軸圍成的面積是
3
+
3
4
3
+
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,過正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的邊長為2,OP=2,連接AP、BP、CP、DP,M、N分別是AB、BC的中點,以O(shè)為原點,射線OM、ON、OP分別為Ox軸、Oy軸、Oz軸的正方向建立空間直角坐標系.若E、F分別為PA、PB的中點,求A、B、C、D、E、F的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖放置的邊長為2的正方形PABC沿x軸滾動.設(shè)頂點P(x,y)的縱坐標與橫坐標的函數(shù)關(guān)系是y=f(x),則f(x)的最小正周期為
 
;  y=f(x)在其兩個相鄰零點間的圖象與x軸所圍區(qū)域的面積為
 

(說明:“正方形PABC 沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點A為中心順時針旋轉(zhuǎn),當頂點B落在x軸上時,再以頂點B為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正方形PABC可以沿x軸負方向滾動.)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省四校聯(lián)考高三(上)期末數(shù)學試卷(解析版) 題型:填空題

如圖放置的邊長為1的正三角形PAB沿x軸滾動,設(shè)頂點A(x,y)的縱坐標與橫坐標的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是    ;(說明:“正三角形PAB沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點A為中心順時針旋轉(zhuǎn),當頂點B落在x軸上時,再以頂點B為中心順時針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負方向逆時針滾動)

查看答案和解析>>

同步練習冊答案