【題目】以下判斷正確的是( )
A.函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)f(x)極值點的充要條件
B.命題“存在x∈R,x2+x﹣1<0”的否定是“任意x∈R,x2+x﹣1>0”
C.命題“在銳角△ABC中,有 sinA>cosB”為真命題
D.“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充分不必要條件
【答案】C
【解析】解:函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f′(x0)=0時,x0不一定是函數(shù)f(x)極值點,
x0為函數(shù)f(x)極值點時,f′(x0)=0成立,
綜上f′(x0)=0是x0為函數(shù)f(x)極值點的必要不充分條件,故A錯誤;
命題“存在x∈R,x2+x﹣1<0”的否定是“任意x∈R,x2+x﹣1≥0”,故B錯誤;
命題“在銳角△ABC中,A+B> ,則A> ﹣B,故sinA>sin( ﹣B)=cosB”,故C正確;
“b=0”時,“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”,“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”時,“b=0”,
綜上“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件,故D錯誤;
故選:C
【考點精析】通過靈活運用命題的真假判斷與應(yīng)用,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且離心率為.
(I)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點.若直線上存在點,使得四邊形是平行四邊形,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時,.
(1)已畫出函數(shù)在軸左側(cè)的圖像,如圖所示,請補出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;
⑵寫出函數(shù)的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓,點在圓上運動.
()如果是等腰三角形,求點的坐標(biāo).
()如果直線與圓的另一個交點為,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:
觀察圖形,回答下列問題:
(1)估計這次環(huán)保知識競賽成績的中位數(shù);
(2)從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+bx(其中a,b為常數(shù),a>0且a≠1,b>0且b≠1)的圖象經(jīng)過點A(1,6),.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若a>b,函數(shù),求函數(shù)g(x)在[-1,2]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合U=R,集合A={x|x2-(a-2)x-2a≥0},B={x|1≤x≤2}.
(1)當(dāng)a=1時,求A∩B;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點是曲線上的動點, 到點的距離與到直線的距離相等.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)是曲線上的點,點在曲線上,直線分別與軸交于點,且,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com