設(shè)f(x)=2sin(2x+
π
6
)+4cos2x.
(Ⅰ)將函數(shù)f(x)化成Asin(ωx+Φ)+b(其中A>0,ω>0)的形式,并說出函數(shù)的周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[
π
2
,π]內(nèi)的取值范圍.
考點:兩角和與差的正弦函數(shù),三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值
分析:(Ⅰ)利用三角恒等變換將函數(shù)f(x)化成Asin(ωx+Φ)+b(其中A>0,ω>0)的形式,并指出函數(shù)的周期.
(Ⅱ)根據(jù)條件以及正弦函數(shù)的定義域和值域,求得函數(shù)f(x)在區(qū)間[
π
2
,π]內(nèi)的取值范圍.
解答: 解:(Ⅰ)函數(shù)f(x)=2sin(2x+
π
6
)+4cos2x=2(sin2x•
3
2
+cos2x•
1
2
)+4•
1+cos2x
2
 
=
3
sin2x+3cos2x+2=2
3
sin(2x+
π
3
)+2,
故函數(shù)的周期為
2
=π.
(Ⅱ)∵x∈[
π
2
,π],∴2x+
π
 
∈[
3
,
3
],∴sin(2x+
π
3
)∈[-1,
3
2
],∴f(x)∈[2-2
3
,5].
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,三角函數(shù)的周期性和求法,正弦函數(shù)的定義域和值域,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在拋物線y2=4x上恒有兩點關(guān)于直線l:y=kx+3則對稱,k的取值范圍是(  )
A、-1<k<0
B、0<k<1
C、-1≤k≤0
D、0≤k≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<b<1,0<α<
π
4
,x=(sinα)logbsinα,y=(cosα)logbcosα,z=(sinα)logbcosα則三數(shù)的大小關(guān)系是( 。
A、x<y<z
B、z<x<y
C、x<z<y
D、y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,|BC|=2,
|AB|
|AC|
=
1
2
,求點A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(1,2)且點P(-2,3)到l的距離為3,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsin(θ-
π
4
)=3
2
,曲線C2的直角坐標(biāo)方程為
x2
16
+
y2
9
=1.
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)已知P為曲線C2上一點,Q為曲線C1上一點,求P、Q兩點間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinx,
3
sinx),
n
=(sinx,cosx),設(shè)函數(shù)f(x)=
m
n

(Ⅰ)求函數(shù)f(x)的解析式,并求f(x)在區(qū)間[-
π
4
,
π
6
]上的最小值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,A為銳角,若f(A)+f(-A)=
3
2
,b+c=7,△ABC的面積為2
3
,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),直線y=x+
6
與以原點為圓心,以橢圓C的短半軸為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左右焦點,P為橢圓C上的任意一點,△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓C上的左頂點,直線∫過右焦點F2與橢圓C交于M,N兩點,若AM,AN的斜率k1,k2滿足k1+
k2=-
1
2
,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子先后拋擲2次,觀察向上的點數(shù),求
(1)兩次向上的點數(shù)之和為7或是4的倍數(shù)的概率;
(2)以第一次向上的點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y的點(x,y)在圓x2+y2=20的內(nèi)部(不包括邊界)的概率.

查看答案和解析>>

同步練習(xí)冊答案