已知等差數(shù)列滿足:,且、、成等比數(shù)列.
(1)求數(shù)列的通項公式.
(2)記為數(shù)列的前項和,是否存在正整數(shù),使得若存在,求的最小值;若不存在,說明理由.
(1)或.
解析試題分析:(1)設數(shù)列的公差為,根據(jù)成等比數(shù)列求得的值,從而求得數(shù)列的通項公式;(2)由(1)中求得的,根據(jù)等差數(shù)列的求和公式求出,解不等式求出滿足條件的的.
(1)設數(shù)列的公差為,依題意,成等比數(shù)列,
所以,解得或,
當時,;當時,,
所以數(shù)列的通項公式為或.
(2)當時,,顯然,不存在正整數(shù),使得.
當時,,
令,即,
解得或(舍去)
此時存在正整數(shù),使得成立,的最小值為41.
綜上所述,當時,不存在正整數(shù);
當時,存在正整數(shù),使得成立,的最小值為41.
考點:等差數(shù)列、等比數(shù)列的性質,等差數(shù)列的求和公式.
科目:高中數(shù)學 來源: 題型:填空題
有一個數(shù)陣排列如下:
1 2 4 7 11 16 22
3 5 8 12 17 23
6 9 13 18 24
10 14 19 25
15 20 26
21 27
28
則第20行從左至右第10個數(shù)字為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
已知數(shù)列{an}是單調遞增的等差數(shù)列,從a1,a2,a3,a4,a5,a6,a7中取走任意三項,則剩下四項依然構成單調遞增的等差數(shù)列的概率是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
已知數(shù)列{an}為等差數(shù)列,若<-1,且它們的前n項和Sn有最大值,則使Sn>0的n的最大值為________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com