已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=lnx-ax2+(2-a)x.
(1)討論f(x)的單調(diào)性;
(2)設(shè)a>0,證明:當(dāng)0<x<時,f>f;
(3)若函數(shù)y=f(x)的圖象與x軸交于A、B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0,證明:<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),且).
(1)當(dāng)時,求函數(shù)的最小值(用表示);
(2)是否存在不同的實(shí)數(shù)使得,,并且,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=a為常數(shù)且a∈(0,1).
(1)當(dāng)a=時,求f;
(2)若x0滿足f[f(x0)]=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點(diǎn).證明函數(shù)f(x)有且僅有兩個二階周期點(diǎn),并求二階周期點(diǎn)x1,x2;
(3)對于(2)中的x1,x2,設(shè)A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),記△ABC的面積為S(a),求S(a)在區(qū)間[,]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,其中是常數(shù).
(1))當(dāng)時, 是奇函數(shù);
(2)當(dāng)時,的圖像上不存在兩點(diǎn)、,使得直線平行于軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖像,當(dāng)時,圖像是二次函數(shù)圖像的一部分,其中頂點(diǎn),過點(diǎn);當(dāng)時,圖像是線段,其中,根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時,學(xué)習(xí)效果最佳.
(1)試求的函數(shù)關(guān)系式;
(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是偶函數(shù)
(1)求k的值;
(2)若函數(shù)的圖象與直線沒有交點(diǎn),求b的取值范圍;
(3)設(shè),若函數(shù)與的圖象有且只有一個公共點(diǎn),求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù),對任意實(shí)數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式和值域;
(2)證明:當(dāng)時,數(shù)列在該區(qū)間上是遞增數(shù)列;
(3)已知,是否存在非零整數(shù),使得對任意,都有
恒成立,若存在,求之;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com