如圖所示的電路圖,設命題p:開關K閉合,命題q:開關K1閉合,命題s:開關K2閉合,命題t:開關K3閉合.
(1)寫出燈泡A亮的充要條件;
(2)寫出燈泡B不亮的充分不必要條件;
(3)寫出燈泡C亮的必要不充分條件.
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義即可得到結論.
解答: 解:(1)燈泡A亮的充要條件是“p∧q”;
(2)燈泡B不亮的充分不必要條件是“﹁p”或“﹁s”;
(3)燈泡C亮的必要不充分條件是p或t.
點評:本題主要考查充分條件和必要條件的應用,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題p:
a
a-1
≤0;命題q:y=xa(x為自變量)在第一象限是增函數(shù),則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2+
256
x2
+a+b的零點都在(-∞,-2]∪[2,+∞)內,求a2+b2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-x-1,g(x)=x2eax
(Ⅰ)求f(x)的最小值;
(Ⅱ)求g(x)的單調區(qū)間;
(Ⅲ)當a=1時,對于在(0,1)中的任一個常數(shù)m,是否存在正數(shù)x0使得f(x0)>
m
2
g(x)成立?如果存在,求出符合條件的一個x0;否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在斜三角形ABC中,角A、B、C所對的邊分別為a、b、c,若
tanC
tanA
+
tanC
tanB
=1,則
a2+b2
c2
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在圖的幾何體中,面ABC∥面DEFG,∠BAC=∠EDG=120°,四邊形ABED是矩形,四邊形ADGC是直角梯形,∠ADG=90°,四邊形DEFG是梯形,EF∥DG,AB=AC=AD=EF=1,DG=2.
(1)求證:FG⊥面ADF;
(2)求四面體CDFG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且a=1,b=
3
,B=2A.
(1)求cosA的值;
(2)求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=aex+b,g(x)=ax2-2x-2(其中a,b∈R,a≠0),設函數(shù)F(x)=f(x)•g(x).
(Ⅰ)若函數(shù)f(x)在x=0處的切線方程為y=x+1,解關于x的不等式F(x)>0;
(Ⅱ)當a>0,b=0時,求函數(shù)F(cos2x)的最小值;
(Ⅲ)在(Ⅰ)的條件下,是否存在區(qū)間[m,n](m>2),使得函數(shù)F(x)在[m,n]上的值域是[
m
2
,
n
2
]?試著說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正△ABC的邊長為3,P1是邊AB上的一點且BP1=1,從P1向BC作垂線,垂足為Q1,從Q1向CA作垂線,垂足為R1,從R1向AB作垂線,垂足為P2.再從P2重復同樣作法,依次得到點Q2,R2,P3,Q3,R3,…Pn,Qn,Rn,…,設BPn=an(n=1,2,3,…).
(Ⅰ)求an+1與an關系式;
(Ⅱ)求數(shù)列{nan}前n項和Sn

查看答案和解析>>

同步練習冊答案