實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z=(m2-3m+2)+(m-2)i表示(1)實(shí)數(shù)?(2)虛數(shù)?(3)純虛數(shù)?(4)點(diǎn)在第四象限?
考點(diǎn):復(fù)數(shù)的基本概念
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:(1)由虛部等于0得答案;
(2)由虛部不等于0得答案;
(3)由實(shí)部等于0且虛部不等于得答案;
(4)由實(shí)部大于0且虛部小于0得答案.
解答: 解:(1)由m-2=0,得m=2;
(2)由m-2≠0,得m≠2;
(3)由
m2-3m+2=0
m-2≠0
,解得m=1;
(4)由
m2-3m+2>0
m-2<0
,解得m<1.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

北海市移動(dòng)公司規(guī)定,打市內(nèi)電話時(shí),如果通話時(shí)間不超過3分鐘,則收取通話費(fèi)0.20元;如果通話時(shí)間超過3分鐘,則超過部分以0.1元/分鐘的標(biāo)準(zhǔn)收費(fèi).
(1)寫出通話費(fèi)用y(元)與通話時(shí)間t(分鐘)的函數(shù)關(guān)系式;
(2)編寫一個(gè)計(jì)算通話費(fèi)用的程序,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集R,集合A={x||x-3|>6},B={x||x|>a,a∈N+},當(dāng)a為何值時(shí),
(1)A是B的充分而不必要條件;
(2)A是B的必要而不充分條件;
(3)A是B的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有4個(gè)不同的球,四個(gè)不同的盒子,把球全部放入盒內(nèi)(結(jié)果用數(shù)字表示).
(1)共有多少種放法?
(2)恰有一個(gè)盒子不放球,有多少種放法?
(3)恰有一個(gè)盒內(nèi)放2個(gè)球,有多少種放法?
(4)恰有兩個(gè)盒不放球,有多少種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=
1
4
,2Sn=2Sn-1+2an-1
+1(n≥2)
(1)求數(shù)列{an}的通項(xiàng)公式
(2)若數(shù)列{bn}滿足b1=
3
4
,且3bn-bn-1
=n(n≥2),證明:{bn-an}為等比數(shù)列,并求{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:“已知x2-mx+1>0對(duì)?x∈R恒成立”,命題q:“不等式x2<9-m2有實(shí)數(shù)解”,若¬p且q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人同時(shí)各自解同一題,甲解答正確的概率為
2
3
,乙解答正確的概率為
3
4
,丙解答正確的概率為
4
5
,互相之間不受影響,求:
(1)三個(gè)人都解答正確的概率;
(2)只有一人解答正確的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)在R上是奇函數(shù),而且在[0,+∞)上是增函數(shù)
(1)求證:函數(shù)y=f(x)在(-∞,0)上也是增函數(shù).
(2)如果f(
1
2
)=1
,解不等式f(2x+1)>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先解答(1),再通過結(jié)構(gòu)類比解答(2):
(1)求證:tan(x+
π
4
)=
1+tanx
1-tanx

(2)設(shè)x∈R,a為非零常數(shù),且f(x+a)=
1+f(x)
1-f(x)
,試問:f(x)是周期函數(shù)嗎?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案