是否存在實數(shù)a,使得函數(shù)y=sin2xacosxa在閉區(qū)間[0,]上的最大值是1?若存在,求出對應(yīng)的a值;若不存在,說明理由.

答案:
解析:

  解:y=1-cos2xacosxa

  當0≤x時,0≤cosx≤1,

  若>1,即a>2,則當cosx=1時ymaxa=1,∴a<2(舍去).

  若0≤≤1,即0≤a≤2,則當cosx時,ymax=1,∴aa=-4(舍去).

  若<0,即a<0時,則當cosx=0時,ymax=1,∴a>0(舍去).

  綜上所述,存在a符合題設(shè).


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

是否存在實數(shù)a,使得函數(shù)y=sin2x+acosx+
5
8
a-
3
2
在閉區(qū)間[0,
π
2
]
上的最大值是1?若存在,求出對應(yīng)的a值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出函數(shù)封閉的定義:若對于定義域D內(nèi)的任意一個自變量x0,都有函數(shù)值f(x0)∈D,稱函數(shù)y=f(x)在D上封閉.
(1)若定義域D1=(0,1),判斷函數(shù)g(x)=2x-1是否在D1上封閉,并說明理由;
(2)若定義域D2=(1,5],是否存在實數(shù)a,使得函數(shù)f(x)=
5x-ax+2
在D2上封閉?若存在,求出a的取值范圍;若不存在,請說明理由.
(3)利用(2)中函數(shù),構(gòu)造一個數(shù)列{xn},方法如下:對于給定的定義域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造數(shù)列的過程中,如果xi(i=1,2,3,4…)在定義域中,構(gòu)造數(shù)列的過程將繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
①如果可以用上述方法構(gòu)造出一個無窮常數(shù)列{xn},求實數(shù)a的取值范圍.
②如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知幾何體A-BCDE的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(1)若幾何體A-BCDE的體積為16,求實數(shù)a的值;
(2)若a=1,求異面直線DE與AB所成角的余弦值;
(3)是否存在實數(shù)a,使得二面角A-DE-B的平面角是45°,若存在,請求出a值;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•黃岡模擬)已知函數(shù)y=f(x)的反函數(shù)為y=f-1(x),定義:若對給定的實數(shù)a(a≠0),函數(shù)y=f(x+a)與y=f-1(x+a)互為反函數(shù),則稱y=f(x)滿足“a和性質(zhì)”.
(1)判斷函數(shù)g(x)=(x+1)2+1,x∈[-2,-1]是否滿足“1和性質(zhì)”,并說明理由;
(2)若F(x)=kx+b,其中k≠0,x∈R滿足“2和性質(zhì)”,則是否存在實數(shù)a,使得F(9)<F(cos2θ+asinθ)<F(1)對任意的θ∈(0,π)恒成立?若存在,求出a的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,圓C:x2-(1+a)x+y2-ay+a=0.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知a>1,圓C與x軸相交于兩點M,N(點M在點N的左側(cè)).過點M任作一條直線與圓O:x2+y2=4相交于兩點A,B.問:是否存在實數(shù)a,使得∠ANM=∠BNM?若存在,求出實數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案