【題目】已知函數(shù)f(x)對任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0時,f(x)<0, f(1)=-2.
(1)求證:f(x)是奇函數(shù);
(2)判斷函數(shù)的單調性
(3)求f(x)在[-3,3]上的最大值和最小值.
【答案】(1) 見解析;(2)見解析;(3) 函數(shù)有最大值6,有最小值-6.
【解析】
(1)根據(jù)任意x,y∈R,都有f(x+y)=f(x)+f(y),利用賦值法構造奇偶性判斷的定義即可證明;(2)根據(jù)函數(shù)單調性的定義證法得到結果即可;(3)根據(jù)已知條件,利用賦值法得到函數(shù)的端點值,結合函數(shù)的單調性得到最值.
(1)因為,所以,所以,
而,因此,
所以 ,所以函數(shù)是奇函數(shù);
(2)設,由,知,
因為,所以,又當時,,
所以,所以,所以,
(3)函數(shù)是定義域上的減函數(shù),當時,函數(shù)有最值,
當時,函數(shù)有最大值,當時,函數(shù)有最大值,
,
,
所以當時,函數(shù)有最大值6,當時,函數(shù)有所有最小值-6.
科目:高中數(shù)學 來源: 題型:
【題目】已知α,β是兩個不同的平面,m,n分別是平面α與平面β之外的兩條不同直線,給出四個論斷:
①m⊥n;②α⊥β;③n⊥β;④m⊥α.
以其中三個論斷作為條件,余下一個論斷作為結論,寫出你認為正確的一個命題:____.(用序號表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲,乙兩名工人加工同一種零件,兩人每天加工的零件數(shù)相同,所得次品數(shù)分別為,,和的分布列如下表.
()分別求期望和.
()試對這兩名工人的技術水平進行比較.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log2x的定義域是[2,16].設g(x)=f(2x)﹣[f(x)]2.
(1)求函數(shù)g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為常數(shù),函數(shù).
(1)當時,求關于的不等式的解集;
(2)當時,若函數(shù)在上存在零點,求實數(shù)的取值范圍;
(3)當時,對于給定的,且,,證明:關于的方程在區(qū)間內(nèi)有一個實根.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(a為實數(shù)).
(1)當a=4時,求函數(shù)y=g(x)在x=0處的切線方程;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)如果關于x的方程g(x)=2exf(x)在區(qū)間[ ,e]上有兩個不等實根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的左右焦點,若在雙曲線的右支上存在一點M,使得( + ) =0(其中O為坐標原點),且| |= | |,則雙曲線離心率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com