【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中點. (Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.
【答案】證明:(Ⅰ)∵PC⊥平面ABCD,AC平面ABCD,∴AC⊥PC, ∵AB=2,AD=CD=1,∴AC=BC= ,
∴AC2+BC2=AB2 , ∴AC⊥BC,
又BC∩PC=C,∴AC⊥平面PBC,
∵AC平面EAC,∴平面EAC⊥平面PBC.
(Ⅱ)如圖,以C為原點,取AB中點F, 、 、 分別為x軸、y軸、z軸正向,建立空間直角坐標系,則C(0,0,0),A(1,1,0),B(1,﹣1,0).
設(shè)P(0,0,a)(a>0),則E( ,﹣ , ),
=(1,1,0), =(0,0,a), =( ,﹣ , ),
取 =(1,﹣1,0),則 = =0, 為面PAC的法向量.
設(shè) =(x,y,z)為面EAC的法向量,則 = =0,
即 取x=a,y=﹣a,z=﹣2,則 =(a,﹣a,﹣2),
依題意,|cos< , >|= = = ,則a=2.
于是 =(2,﹣2,﹣2), =(1,1,﹣2).
設(shè)直線PA與平面EAC所成角為θ,則sinθ=|cos< , >|= = ,
即直線PA與平面EAC所成角的正弦值為 .
【解析】(Ⅰ)證明平面EAC⊥平面PBC,只需證明AC⊥平面PBC,即證AC⊥PC,AC⊥BC;(Ⅱ)根據(jù)題意,建立空間直角坐標系,用坐標表示點與向量,求出面PAC的法向量 =(1,﹣1,0),面EAC的法向量 =(a,﹣a,﹣2),利用二面角P﹣A C﹣E的余弦值為 ,可求a的值,從而可求 =(2,﹣2,﹣2), =(1,1,﹣2),即可求得直線PA與平面EAC所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】有一個容量為100的樣本,其頻率分布直方圖如圖所示,已知樣本數(shù)據(jù)落在區(qū)間[10,12)內(nèi)的頻數(shù)比樣本數(shù)據(jù)落在區(qū)間[8,10)內(nèi)的頻數(shù)少12,則實數(shù)m的值等于( )
A.0.10
B.0.11
C.0.12
D.0.13
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=logax(a>0且a≠1)在區(qū)間[1,2]上的最大值與函數(shù)g(x)=﹣ 在區(qū)間[1,2]上的最大值互為相反數(shù).
(1)求a的值;
(2)若函數(shù)F(x)=f(x2﹣mx﹣m)在區(qū)間(﹣∞,1﹣ )上是減函數(shù),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 平面.
(1)求證: 平面;
(2)若為線段的中點,且過三點平面與線段交于點,確定的位置,說明理由;
并求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1的棱長為1,給出下列四個命題: ①對角線AC1被平面A1BD和平面B1 CD1三等分;
②正方體的內(nèi)切球、與各條棱相切的球、外接球的表面積之比為1:2:3;
③以正方體的頂點為頂點的四面體的體積都是 ;
④正方體與以A為球心,1為半徑的球在該正方體內(nèi)部部分的體積之比為6:π
其中正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面α過正方體ABCD﹣A1B1C1D1的頂點A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面ABB1A1=n,則m、n所成角的正弦值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com