(本題滿分14分)
定義在R上的單調(diào)函數(shù)f(x)滿足f(3)=log23且對(duì)任意x,y∈R都有
f(x+y)=f (x )+ f(y).
(Ⅰ)求證f (x)為奇函數(shù);K^S*5U.C#
(Ⅱ)若,對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍
解析
又t>0時(shí),,當(dāng)且僅當(dāng)時(shí),…12分
∴……13分
綜上所述,時(shí),f (k ·3x )+ f (3 x-9 x-2)<0對(duì)任意x∈R恒成立. …14分
【方法2:h(t)的其對(duì)稱軸…….11分K^S*5U.C#
1)當(dāng)時(shí),h(0)=2>0, 而且h(t)在(0,+∞)上是單調(diào)增函數(shù),所以h(t)>0對(duì)任意t>0恒成立.符合題意. #高&考*¥資%源#網(wǎng)12分
2)當(dāng)時(shí),則須,
則得 ……13分
綜上所述,時(shí),對(duì)任意x∈R恒成立. ……14分】
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)定義在[-1,1]上的奇函數(shù)當(dāng)時(shí),
(Ⅰ)求在[-1,1]上的解析式;
(Ⅱ)判斷在(0,1)上的單調(diào)性,并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù) ,
(1)求函數(shù)的定義域;(2)證明:是偶函數(shù);
(3)若,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)是增函數(shù),求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,
m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí) ①求f0(x)和fk(x)的解析式; ②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)對(duì)任意實(shí)數(shù)均有,其中常數(shù)為負(fù)數(shù),且在區(qū)間上有表達(dá)式.
(1)求,的值;
(2)寫出在上的表達(dá)式,并討論函數(shù)在上的單調(diào)性;
(3)求出在上的最小值與最大值,并求出相應(yīng)的自變量的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)。
(1)設(shè),求函數(shù)的極值;
(2)若,且當(dāng)時(shí),12a恒成立,試確定的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)f (x) =,.
(1)證明函數(shù)y = f (x)的圖象關(guān)于點(diǎn)(a,-1)成中心對(duì)稱圖形;
(2)當(dāng)x時(shí),求證:f (x).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com