精英家教網 > 高中數學 > 題目詳情
已知極坐標系的極點O與直角坐標系的原點重合,極軸與x軸的正半軸重合,曲線C1與曲線C2(t∈R)交于A、B兩點.求證:OA⊥OB.
【答案】分析:先將極坐標方程化為普通方程,再將這兩個方程聯立,消去x,得y2-4y-16=0,再由韋達定理研究.
解答:證:曲線C1的直角坐標方程x-y=4,曲線C2的直角坐標方程是拋物線y2=4x,(4分)
設A(x1,y1),B(x2,y2),將這兩個方程聯立,消去x,
得y2-4y-16=0⇒y1y2=-16,y1+y2=4,(6分)
∴x1x2+y1y2=(y1+4)(y2+4)+y1y2=2y1y2+4(y1+y2)+16=0.(8分)
,∴OA⊥OB.(10分)
點評:本題主要考查極坐標方程與普通方程的互化和直線與圓錐曲線的位置關系的問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知極坐標系的極點O與直角坐標系的原點重合,極軸與x軸的正半軸重合,曲線C1ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
(t∈R)交于A、B兩點.求證:OA⊥OB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內作答.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1 幾何證明選講
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,AE=AC,DE交AB于點F.求證:△PDF∽△POC.
B.選修4-2 矩陣與變換
若點A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣.
C.選修4-4 坐標系與參數方程
已知極坐標系的極點O與直角坐標系的原點重合,極軸與x軸的正半軸重合,
曲線C1ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
(t∈R)交于A、B兩點.求證:OA⊥OB.
D.選修4-5 不等式選講
已知x,y,z均為正數.求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數學 來源: 題型:

A.如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,AE=AC,DE交AB于點F.求證:△PDF∽△POC.
B.已知矩陣A=
.
1-2
3-7
.

(1)求逆矩陣A-1
(2)若矩陣X滿足AX=
3
1
,試求矩陣X.
C.坐標系與參數方程
已知極坐標系的極點O與直角坐標系的原點重合,極軸與x軸的正半軸重合,曲線C1:ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
,(t∈R)交于A、B兩點.求證:OA⊥OB.
D.已知x,y,z均為正數,求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數學 來源: 題型:

已知極坐標系的極點O與直角坐標系的原點重合,極軸與x軸的正半軸重合,曲線C1 : ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
,(t∈R)交于A,B兩點,則
OA
 , 
OB
=
π
2
π
2

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高考模擬試題(1) 題型:解答題

(1)(本小題滿分7分) 選修4一2:矩陣與變換

   若點A(2,2)在矩陣對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣.

    (2)(本小題滿分7分) 選修4一4:坐標系與參數方程

    已知極坐標系的極點O與直角坐標系的原點重合,極軸與x軸的正半軸重合,曲線C1:與曲線C2(t∈R)交于A、B兩點.求證:OA⊥OB.

    (3)(本小題滿分7分) 選修4一5:不等式選講

   求證:,.

 

查看答案和解析>>

同步練習冊答案