【題目】在平面直角坐標(biāo)系中,已知兩定點(diǎn)、,⊙C的方程為.當(dāng)⊙C的半徑取最小值時(shí):
(1)求出此時(shí)m的值,并寫出⊙C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在異于點(diǎn)E的另外一個(gè)點(diǎn)F,使得對(duì)于⊙C上任意一點(diǎn)P,總有為定值?若存在,求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明你的理由;
(3)在第(2)問的條件下,求的取值范圍.
【答案】(1);(2);(3).
【解析】試題分析:(1)把一般方程化為標(biāo)注形式,由二次函數(shù)最值得;(2)由于λ取值與x無關(guān),則對(duì)應(yīng)項(xiàng)系數(shù)成比例;(3) 在第(2)問的條件下, ,利用對(duì)勾函數(shù)求最值.
試題解析:
(1)⊙C的標(biāo)準(zhǔn)式為: ,
當(dāng)時(shí),⊙C的半徑取最小值,此時(shí)⊙C的標(biāo)準(zhǔn)方程為;
(2)設(shè),定點(diǎn)(m為常數(shù)),則.
∵,∴,代入上式,
得: .
由于λ取值與x無關(guān),∴(舍去).
此時(shí)點(diǎn)F的坐標(biāo)為, 即;
(3)
由上問可知對(duì)于⊙C上任意一點(diǎn)P總有,
故,
而(當(dāng)P、F、G三點(diǎn)共線時(shí)取等號(hào)),
又,故.
∴
,
令,則,
根據(jù)對(duì)勾函數(shù)的單調(diào)性可得: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,cos C=.
(1)若·=,求c的最小值;
(2)設(shè)向量x=(2sin B,-),y=,且x∥y,求sin(B-A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天氣預(yù)報(bào)顯示,在今后的三天中,每一天下雨的概率為40%,現(xiàn)用隨機(jī)模擬的方法估計(jì)這三天中恰有兩天下雨的概率:先利用計(jì)算器產(chǎn)生0--9之間整數(shù)值的隨機(jī)數(shù),并制定用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,再以每3個(gè)隨機(jī)數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機(jī)數(shù)
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
則這三天中恰有兩天下雨的概率近似為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中裝有編號(hào)為的3個(gè)黑球和編號(hào)為的2個(gè)紅球,從中任意摸出2個(gè)球.
(Ⅰ)寫出所有不同的結(jié)果;
(Ⅱ)求恰好摸出1個(gè)黑球和1個(gè)紅球的概率;
(Ⅲ)求至少摸出1個(gè)紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形PBCD中,,,,A為PD的中點(diǎn),如圖.將△PAB沿AB折到△SAB的位置,使SB⊥BC,點(diǎn)E在SD上,且,如圖.
(Ⅰ)求證:SA⊥平面ABCD;
(Ⅱ)求二面角E﹣AC﹣D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求函數(shù)在處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有兩個(gè)極值點(diǎn),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為, , , , .
(1)求直方圖中的值;
(2)如果上學(xué)路上所需時(shí)間不少于40分鐘的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,請(qǐng)估計(jì)學(xué)校1000名新生中有多少名學(xué)生可以申請(qǐng)住宿.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在三棱柱中,底面是邊長(zhǎng)為2的等邊三角形,為的中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)若四邊形是正方形,且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了參加師大附中第30屆田徑運(yùn)動(dòng)會(huì)的開幕式,高三年級(jí)某6個(gè)班聯(lián)合到集市購買了6根竹竿,作為班期的旗桿之用,它們的長(zhǎng)度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(1)若從中隨機(jī)抽取兩根竹竿,求長(zhǎng)度之差不超過0.5米的概率;
(2)若長(zhǎng)度不小于4米的竹竿價(jià)格為每根10元,長(zhǎng)度小于4米的竹竿價(jià)格為每根元.從這6根竹竿中隨機(jī)抽取兩根,若期望這兩根竹竿的價(jià)格之和為18元,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com